IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v227y2013i3p503-514.html
   My bibliography  Save this article

Optimizing specimen collection for processing in clinical testing laboratories

Author

Listed:
  • Yücel, E.
  • Salman, F.S.
  • Gel, E.S.
  • Örmeci, E.L.
  • Gel, A.

Abstract

We study the logistics of specimen collection for a clinical testing laboratory that serves sites dispersed in an urban area. The specimens that accumulate at the customer sites throughout the working day are transported to the laboratory for processing. The problem is to construct and schedule a series of tours to collect the accumulated specimens from the sites throughout the day. Two hierarchical objectives are considered: (i) maximizing the amount of specimens processed by the next morning, and (ii) minimizing the daily transportation cost. We show that the problem is NP-hard and formulate a linear Mixed Integer Programming (MIP) model to solve the bicriteria problem in two levels. We characterize properties of optimal solutions and develop a heuristic approach based on solving the MIP model with additional constraints that seeks for feasible solutions with specific characteristics. To evaluate the performance of this approach, we provide an upper bounding scheme on the daily processed amount, and develop two relaxed MIP models to generate lower bounds on the daily transportation cost. The effectiveness of the proposed solution approach is evaluated using realistic problem instances. Insights on key problem parameters and their effects on the solutions are extracted by further experiments.

Suggested Citation

  • Yücel, E. & Salman, F.S. & Gel, E.S. & Örmeci, E.L. & Gel, A., 2013. "Optimizing specimen collection for processing in clinical testing laboratories," European Journal of Operational Research, Elsevier, vol. 227(3), pages 503-514.
  • Handle: RePEc:eee:ejores:v:227:y:2013:i:3:p:503-514
    DOI: 10.1016/j.ejor.2012.10.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712008090
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.10.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N H Moin & S Salhi, 2007. "Inventory routing problems: a logistical overview," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(9), pages 1185-1194, September.
    2. M. Barry Dumas & Manus Rabinowitz, 1977. "Policies for Reducing Blood Wastage in Hospital Blood Banks," Management Science, INFORMS, vol. 23(10), pages 1124-1132, June.
    3. Bruce L. Golden & Larry Levy & Rakesh Vohra, 1987. "The orienteering problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(3), pages 307-318, June.
    4. Jinxin Yi, 2003. "Vehicle Routing with Time Windows and Time-Dependent Rewards: A Problem from the American Red Cross," Manufacturing & Service Operations Management, INFORMS, vol. 5(1), pages 74-77.
    5. Pieter Vansteenwegen & Wouter Souffriau & Greet Vanden Berghe & Dirk Van Oudheusden, 2009. "Metaheuristics for Tourist Trip Planning," Lecture Notes in Economics and Mathematical Systems, in: Kenneth Sörensen & Marc Sevaux & Walter Habenicht & Martin Josef Geiger (ed.), Metaheuristics in the Service Industry, chapter 2, pages 15-31, Springer.
    6. Jeffrey W. Ohlmann & Michael J. Fry & Barrett W. Thomas, 2008. "Route Design for Lean Production Systems," Transportation Science, INFORMS, vol. 42(3), pages 352-370, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Şahinyazan, Feyza Güliz & Kara, Bahar Y. & Taner, Mehmet Rüştü, 2015. "Selective vehicle routing for a mobile blood donation system," European Journal of Operational Research, Elsevier, vol. 245(1), pages 22-34.
    2. Cao, Wenwei & Çelik, Melih & Ergun, Özlem & Swann, Julie & Viljoen, Nadia, 2016. "Challenges in service network expansion: An application in donated breastmilk banking in South Africa," Socio-Economic Planning Sciences, Elsevier, vol. 53(C), pages 33-48.
    3. Chitsaz, Masoud & Cordeau, Jean-François & Jans, Raf, 2020. "A branch-and-cut algorithm for an assembly routing problem," European Journal of Operational Research, Elsevier, vol. 282(3), pages 896-910.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jesse Pietz & Johannes O. Royset, 2013. "Generalized orienteering problem with resource dependent rewards," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(4), pages 294-312, June.
    2. Turgay Ayer & Can Zhang & Chenxi Zeng & Chelsea C. White III & V. Roshan Joseph, 2019. "Analysis and Improvement of Blood Collection Operations," Service Science, INFORMS, vol. 21(1), pages 29-46, January.
    3. Dang, Duc-Cuong & Guibadj, Rym Nesrine & Moukrim, Aziz, 2013. "An effective PSO-inspired algorithm for the team orienteering problem," European Journal of Operational Research, Elsevier, vol. 229(2), pages 332-344.
    4. Ido Orenstein & Tal Raviv & Elad Sadan, 2019. "Flexible parcel delivery to automated parcel lockers: models, solution methods and analysis," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 683-711, December.
    5. Verbeeck, C. & Vansteenwegen, P. & Aghezzaf, E.-H., 2016. "Solving the stochastic time-dependent orienteering problem with time windows," European Journal of Operational Research, Elsevier, vol. 255(3), pages 699-718.
    6. Labadie, Nacima & Mansini, Renata & Melechovský, Jan & Wolfler Calvo, Roberto, 2012. "The Team Orienteering Problem with Time Windows: An LP-based Granular Variable Neighborhood Search," European Journal of Operational Research, Elsevier, vol. 220(1), pages 15-27.
    7. Vansteenwegen, Pieter & Souffriau, Wouter & Oudheusden, Dirk Van, 2011. "The orienteering problem: A survey," European Journal of Operational Research, Elsevier, vol. 209(1), pages 1-10, February.
    8. Morteza Keshtkaran & Koorush Ziarati & Andrea Bettinelli & Daniele Vigo, 2016. "Enhanced exact solution methods for the Team Orienteering Problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 591-601, January.
    9. Renaud, Jacques & Boctor, Fayez F., 1998. "An efficient composite heuristic for the symmetric generalized traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 108(3), pages 571-584, August.
    10. Kobeaga, Gorka & Rojas-Delgado, Jairo & Merino, María & Lozano, Jose A., 2024. "A revisited branch-and-cut algorithm for large-scale orienteering problems," European Journal of Operational Research, Elsevier, vol. 313(1), pages 44-68.
    11. Meyer, Anne & Amberg, Boris, 2018. "Transport concept selection considering supplier milk runs – An integrated model and a case study from the automotive industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 113(C), pages 147-169.
    12. Amir Saeed Nikkhah Qamsari & Seyyed-Mahdi Hosseini-Motlagh & Seyed Farid Ghannadpour, 2022. "A column generation approach for an inventory routing problem with fuzzy time windows," Operational Research, Springer, vol. 22(2), pages 1157-1207, April.
    13. Dikas, G. & Minis, I., 2014. "Scheduled paratransit transport systems," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 18-34.
    14. Chua, Geoffrey A. & Senga, Juan Ramon L., 2022. "Blood supply interventions during disasters: Efficiency measures and strategies to mitigate volatility," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    15. Vansteenwegen, Pieter & Mateo, Manuel, 2014. "An iterated local search algorithm for the single-vehicle cyclic inventory routing problem," European Journal of Operational Research, Elsevier, vol. 237(3), pages 802-813.
    16. Malinowski, Ethan & Karwan, Mark H. & Pinto, José M. & Sun, Lei, 2018. "A mixed-integer programming strategy for liquid helium global supply chain planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 168-188.
    17. Xiang Li & Haoyue Fan & Jiaming Liu & Qifeng Xun, 2022. "Staff scheduling in blood collection problems," Annals of Operations Research, Springer, vol. 316(1), pages 365-400, September.
    18. Lu, Yongliang & Benlic, Una & Wu, Qinghua, 2018. "A memetic algorithm for the Orienteering Problem with Mandatory Visits and Exclusionary Constraints," European Journal of Operational Research, Elsevier, vol. 268(1), pages 54-69.
    19. Chen, Chialin & Achtari, Guyves & Majkut, Kevin & Sheu, Jiuh-Biing, 2017. "Balancing equity and cost in rural transportation management with multi-objective utility analysis and data envelopment analysis: A case of Quinte West," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 148-165.
    20. Og̀uz Solyalı & Haldun Süral & Meltem Denizel, 2010. "The one‐warehouse multiretailer problem with an order‐up‐to level inventory policy," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(7), pages 653-666, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:227:y:2013:i:3:p:503-514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.