IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v223y2012i1p106-115.html
   My bibliography  Save this article

VaR methods for the dynamic impawn rate of steel in inventory financing under autocorrelative return

Author

Listed:
  • Juan, He
  • Xianglin, Jiang
  • Jian, Wang
  • Daoli, Zhu
  • Lei, Zhen

Abstract

This paper proposes the way of setting the dynamic impawn rate by dividing the impawn periods into different risk windows. In an efficient financial market, the return is hypothetically independent, while in a pledged inventory market where spot transactions predominate, the return is auto-correlative. Therefore, the key to setting the impawn rate is to predict the long-term risk. In this experiment, using the database of spot steel, we established a model with the formula AR (1)-GARCH (1,1)-GED, forecasting the VaR of steel during the different risk windows in the impawn period through a method of out-of-sample, and got the impawn rate according with the risk exposure of banks. The results of our experiment indicated that the introduction of coefficient K into the model can significantly improve bank risk coverage and reduce its efficiency loss. Besides, the impawn rate obtained by the model correlates positively with the lowest price in the future risk windows.

Suggested Citation

  • Juan, He & Xianglin, Jiang & Jian, Wang & Daoli, Zhu & Lei, Zhen, 2012. "VaR methods for the dynamic impawn rate of steel in inventory financing under autocorrelative return," European Journal of Operational Research, Elsevier, vol. 223(1), pages 106-115.
  • Handle: RePEc:eee:ejores:v:223:y:2012:i:1:p:106-115
    DOI: 10.1016/j.ejor.2012.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712004602
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.06.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    2. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    3. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. René Caldentey & Martin B. Haugh, 2009. "Supply Contracts with Financial Hedging," Operations Research, INFORMS, vol. 57(1), pages 47-65, February.
    6. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    7. Esa Jokivuolle & Samu Peura, 2003. "Incorporating Collateral Value Uncertainty in Loss Given Default Estimates and Loan‐to‐value Ratios," European Financial Management, European Financial Management Association, vol. 9(3), pages 299-314, September.
    8. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    9. Lee, Chang Hwan & Rhee, Byong-Duk, 2011. "Trade credit for supply chain coordination," European Journal of Operational Research, Elsevier, vol. 214(1), pages 136-146, October.
    10. Chen, Xiangfeng & Cai, Gangshu (George), 2011. "Joint logistics and financial services by a 3PL firm," European Journal of Operational Research, Elsevier, vol. 214(3), pages 579-587, November.
    11. John A. Buzacott & Rachel Q. Zhang, 2004. "Inventory Management with Asset-Based Financing," Management Science, INFORMS, vol. 50(9), pages 1274-1292, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiao Wang & Lima Zhao & Arnd Huchzermeier, 2021. "Operations‐Finance Interface in Risk Management: Research Evolution and Opportunities," Production and Operations Management, Production and Operations Management Society, vol. 30(2), pages 355-389, February.
    2. Zhi, Bangdong & Wang, Xiaojun & Xu, Fangming, 2022. "Managing inventory financing in a volatile market: A novel data-driven copula model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    3. Hu, Haiqing & Chen, Di & Sui, Bo & Zhang, Lang & Wang, Yinyin, 2020. "Price volatility spillovers between supply chain and innovation of financial pledges in China," Economic Modelling, Elsevier, vol. 89(C), pages 397-413.
    4. Zhi, Bangdong & Wang, Xiaojun & Xu, Fangming, 2020. "Impawn rate optimisation in inventory financing: A canonical vine copula-based approach," International Journal of Production Economics, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Turan Bali & Panayiotis Theodossiou, 2007. "A conditional-SGT-VaR approach with alternative GARCH models," Annals of Operations Research, Springer, vol. 151(1), pages 241-267, April.
    2. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    3. Bali, Turan G. & Weinbaum, David, 2007. "A conditional extreme value volatility estimator based on high-frequency returns," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 361-397, February.
    4. Chang, Chia-Lin & González-Serrano, Lydia & Jimenez-Martin, Juan-Angel, 2013. "Currency hedging strategies using dynamic multivariate GARCH," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 164-182.
    5. Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
    6. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    7. Timotheos Angelidis & Alexandros Benos & Stavros Degiannakis, 2007. "A robust VaR model under different time periods and weighting schemes," Review of Quantitative Finance and Accounting, Springer, vol. 28(2), pages 187-201, February.
    8. Sonia Benito Muela & Carmen López-Martín & Mª Ángeles Navarro, 2017. "The Role of the Skewed Distributions in the Framework of Extreme Value Theory (EVT)," International Business Research, Canadian Center of Science and Education, vol. 10(11), pages 88-102, November.
    9. Caporale, Guglielmo Maria & Zekokh, Timur, 2019. "Modelling volatility of cryptocurrencies using Markov-Switching GARCH models," Research in International Business and Finance, Elsevier, vol. 48(C), pages 143-155.
    10. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
    11. Vica Tendenan & Richard Gerlach & Chao Wang, 2020. "Tail risk forecasting using Bayesian realized EGARCH models," Papers 2008.05147, arXiv.org, revised Aug 2020.
    12. Chen, Qian & Gerlach, Richard & Lu, Zudi, 2012. "Bayesian Value-at-Risk and expected shortfall forecasting via the asymmetric Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3498-3516.
    13. Gonzalo Cortazar & Alejandro Bernales & Diether Beuermann, 2005. "Methodology and Implementation of Value-at-Risk Measures in Emerging Fixed-Income Markets with Infrequent Trading," Finance 0512030, University Library of Munich, Germany.
    14. Wu, Qi & Yan, Xing, 2019. "Capturing deep tail risk via sequential learning of quantile dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    15. Xin Chen & Zhangming Shan & Decai Tang & Biao Zhou & Valentina Boamah, 2023. "Interest rate risk of Chinese commercial banks based on the GARCH-EVT model," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-11, December.
    16. Stavroyiannis, S. & Makris, I. & Nikolaidis, V. & Zarangas, L., 2012. "Econometric modeling and value-at-risk using the Pearson type-IV distribution," International Review of Financial Analysis, Elsevier, vol. 22(C), pages 10-17.
    17. Sander Barendse & Erik Kole & Dick van Dijk, 2023. "Backtesting Value-at-Risk and Expected Shortfall in the Presence of Estimation Error," Journal of Financial Econometrics, Oxford University Press, vol. 21(2), pages 528-568.
    18. Abad, Pilar & Benito, Sonia, 2013. "A detailed comparison of value at risk estimates," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 258-276.
    19. Ravi Summinga-Sonagadu & Jason Narsoo, 2019. "Risk Model Validation: An Intraday VaR and ES Approach Using the Multiplicative Component GARCH," Risks, MDPI, vol. 7(1), pages 1-23, January.
    20. Cifter, Atilla, 2011. "Value-at-risk estimation with wavelet-based extreme value theory: Evidence from emerging markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(12), pages 2356-2367.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:223:y:2012:i:1:p:106-115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.