IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v216y2012i1p152-161.html
   My bibliography  Save this article

Computational results of an O∗(n4) volume algorithm

Author

Listed:
  • Lovász, L.
  • Deák, I.

Abstract

Recently an O∗(n4) volume algorithm has been presented for convex bodies by Lovász and Vempala, where n is the number of dimensions of the convex body. Essentially the algorithm is a series of Monte Carlo integrations. In this paper we describe a computer implementation of the volume algorithm, where we improved the computational aspects of the original algorithm by adding variance decreasing modifications: a stratified sampling strategy, double point integration and orthonormalised estimators. Formulas and methodology were developed so that the errors in each phase of the algorithm can be controlled. Some computational results for convex bodies in dimensions ranging from 2 to 10 are presented as well.

Suggested Citation

  • Lovász, L. & Deák, I., 2012. "Computational results of an O∗(n4) volume algorithm," European Journal of Operational Research, Elsevier, vol. 216(1), pages 152-161.
  • Handle: RePEc:eee:ejores:v:216:y:2012:i:1:p:152-161
    DOI: 10.1016/j.ejor.2011.06.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221711005534
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2011.06.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adam Tauman Kalai & Santosh Vempala, 2006. "Simulated Annealing for Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 31(2), pages 253-266, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephen Baumert & Archis Ghate & Seksan Kiatsupaibul & Yanfang Shen & Robert L. Smith & Zelda B. Zabinsky, 2009. "Discrete Hit-and-Run for Sampling Points from Arbitrary Distributions Over Subsets of Integer Hyperrectangles," Operations Research, INFORMS, vol. 57(3), pages 727-739, June.
    2. Sarojini M. Attili & Sean T. Mackesey & Giorgio A. Ascoli, 2020. "Operations research methods for estimating the population size of neuron types," Annals of Operations Research, Springer, vol. 289(1), pages 33-50, June.
    3. de Klerk, Etienne & Badenbroek, Riley, 2022. "Simulated annealing with hit-and-run for convex optimization: complexity analysis and practical perspectives," Other publications TiSEM 323b4588-65e0-4889-a555-9, Tilburg University, School of Economics and Management.
    4. Cyril Bachelard & Apostolos Chalkis & Vissarion Fisikopoulos & Elias Tsigaridas, 2024. "Randomized Control in Performance Analysis and Empirical Asset Pricing," Papers 2403.00009, arXiv.org.
    5. Ioannis G. Tsoulos & Alexandros Tzallas & Evangelos Karvounis, 2024. "Using Optimization Techniques in Grammatical Evolution," Future Internet, MDPI, vol. 16(5), pages 1-20, May.
    6. Etienne de Klerk & Monique Laurent, 2018. "Comparison of Lasserre’s Measure-Based Bounds for Polynomial Optimization to Bounds Obtained by Simulated Annealing," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1317-1325, November.
    7. de Klerk, Etienne & Laurent, Monique, 2017. "Comparison of Lasserre's Measure-based Bounds for Polynomial Optimization to Bounds Obtained by Simulated Annealing," Other publications TiSEM 7a865ba0-bffb-43fb-a376-7, Tilburg University, School of Economics and Management.
    8. Zachary Porreca, 2024. "A Note on Uncertainty Quantification for Maximum Likelihood Parameters Estimated with Heuristic Based Optimization Algorithms," Papers 2401.07176, arXiv.org.
    9. Badenbroek, Riley & de Klerk, Etienne, 2022. "Complexity analysis of a sampling-based interior point method for convex optimization," Other publications TiSEM 3d774c6d-8141-4f31-a621-5, Tilburg University, School of Economics and Management.
    10. de Klerk, Etienne & Laurent, Monique, 2018. "Comparison of Lasserre's measure-based bounds for polynomial optimization to bounds obtained by simulated annealing," Other publications TiSEM 78f8f496-dc89-413e-864d-f, Tilburg University, School of Economics and Management.
    11. Riley Badenbroek & Etienne Klerk, 2022. "Simulated Annealing for Convex Optimization: Rigorous Complexity Analysis and Practical Perspectives," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 465-491, August.
    12. de Klerk, Etienne & Laurent, Monique, 2019. "A survey of semidefinite programming approaches to the generalized problem of moments and their error analysis," Other publications TiSEM d956492f-3e25-4dda-a5e2-e, Tilburg University, School of Economics and Management.
    13. Huseyin Mete & Yanfang Shen & Zelda Zabinsky & Seksan Kiatsupaibul & Robert Smith, 2011. "Pattern discrete and mixed Hit-and-Run for global optimization," Journal of Global Optimization, Springer, vol. 50(4), pages 597-627, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:216:y:2012:i:1:p:152-161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.