IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v210y2011i2p448-451.html
   My bibliography  Save this article

Revisiting the PERT mean and variance

Author

Listed:
  • HerrerI´as-Velasco, José Manuel
  • HerrerI´as-Pleguezuelo, Rafael
  • van Dorp, Johan René

Abstract

Difficulties with the interpretation of the parameters of the beta distribution let Malcolm et al. (1959) to suggest in the Program Evaluation and Review Technique (PERT) their by now classical expressions for the mean and variance for activity completion for practical applications. In this note, we shall provide an alternative for the PERT variance expression addressing a concern raised by Hahn (2008) regarding the constant PERT variance assumption given the range for an activity's duration, while retaining the original PERT mean expression. Moreover, our approach ensures that an activity's elicited most likely value aligns with the beta distribution's mode. While this was the original intent of Malcolm et al. (1959), their method of selecting beta parameters via the PERT mean and variance is not consistent in this manner.

Suggested Citation

  • HerrerI´as-Velasco, José Manuel & HerrerI´as-Pleguezuelo, Rafael & van Dorp, Johan René, 2011. "Revisiting the PERT mean and variance," European Journal of Operational Research, Elsevier, vol. 210(2), pages 448-451, April.
  • Handle: RePEc:eee:ejores:v:210:y:2011:i:2:p:448-451
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00551-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hahn, Eugene David, 2008. "Mixture densities for project management activity times: A robust approach to PERT," European Journal of Operational Research, Elsevier, vol. 188(2), pages 450-459, July.
    2. Kamburowski, J., 1997. "New validations of PERT times," Omega, Elsevier, vol. 25(3), pages 323-328, June.
    3. M. W. Sasieni, 1986. "Note---A Note on Pert Times," Management Science, INFORMS, vol. 32(12), pages 1652-1653, December.
    4. D. G. Malcolm & J. H. Roseboom & C. E. Clark & W. Fazar, 1959. "Application of a Technique for Research and Development Program Evaluation," Operations Research, INFORMS, vol. 7(5), pages 646-669, October.
    5. T. C. T. Kotiah & N. D. Wallace, 1973. "Another Look at the PERT Assumptions," Management Science, INFORMS, vol. 20(1), pages 44-49, September.
    6. Golenko-Ginzburg, D, 1989. "PERT assumptions revisited," Omega, Elsevier, vol. 17(4), pages 393-396.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pérez, José García & Martín, María del Mar López & García, Catalina García & Sánchez Granero, Miguel Ángel, 2016. "Project management under uncertainty beyond beta: The generalized bicubic distribution," Operations Research Perspectives, Elsevier, vol. 3(C), pages 67-76.
    2. Zhen Song & Håkan Schunnesson & Mikael Rinne & John Sturgul, 2015. "An Approach to Realizing Process Control for Underground Mining Operations of Mobile Machines," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pérez, José García & Martín, María del Mar López & García, Catalina García & Sánchez Granero, Miguel Ángel, 2016. "Project management under uncertainty beyond beta: The generalized bicubic distribution," Operations Research Perspectives, Elsevier, vol. 3(C), pages 67-76.
    2. A. Hernández-Bastida & M. P. Fernández-Sánchez, 2019. "How adding new information modifies the estimation of the mean and the variance in PERT: a maximum entropy distribution approach," Annals of Operations Research, Springer, vol. 274(1), pages 291-308, March.
    3. Hajdu M. & Isaac S., 2016. "Sixty years of project planning: history and future," Organization, Technology and Management in Construction, Sciendo, vol. 8(1), pages 1499-1510, December.
    4. López Martín, M.M. & García García, C.B. & García Pérez, J. & Sánchez Granero, M.A., 2012. "An alternative for robust estimation in Project Management," European Journal of Operational Research, Elsevier, vol. 220(2), pages 443-451.
    5. Hahn, Eugene David, 2008. "Mixture densities for project management activity times: A robust approach to PERT," European Journal of Operational Research, Elsevier, vol. 188(2), pages 450-459, July.
    6. Kamburowski, J., 1997. "New validations of PERT times," Omega, Elsevier, vol. 25(3), pages 323-328, June.
    7. Catalina García & José Pérez & Salvador Rambaud, 2010. "Proposal of a new distribution in PERT methodology," Annals of Operations Research, Springer, vol. 181(1), pages 515-538, December.
    8. Trietsch, Dan & Mazmanyan, Lilit & Gevorgyan, Lilit & Baker, Kenneth R., 2012. "Modeling activity times by the Parkinson distribution with a lognormal core: Theory and validation," European Journal of Operational Research, Elsevier, vol. 216(2), pages 386-396.
    9. Verónica Morales-Sánchez & Antonio Hernández-Mendo & Pedro Sánchez-Algarra & Ángel Blanco-Villaseñor & María-Teresa Anguera-Argilaga, 2009. "Random PERT: application to physical activity/sports programs," Quality & Quantity: International Journal of Methodology, Springer, vol. 43(2), pages 225-236, March.
    10. Colin, Jeroen & Vanhoucke, Mario, 2014. "Setting tolerance limits for statistical project control using earned value management," Omega, Elsevier, vol. 49(C), pages 107-122.
    11. Barbara Gładysz, 2017. "Fuzzy-probabilistic PERT," Annals of Operations Research, Springer, vol. 258(2), pages 437-452, November.
    12. Kotz, Samuel & van Dorp, J. René, 2005. "A link between two-sided power and asymmetric Laplace distributions: with applications to mean and variance approximations," Statistics & Probability Letters, Elsevier, vol. 71(4), pages 383-394, March.
    13. van Dorp, J. Rene, 2005. "Statistical dependence through common risk factors: With applications in uncertainty analysis," European Journal of Operational Research, Elsevier, vol. 161(1), pages 240-255, February.
    14. Lau, Hon-Shiang & Somarajan, C., 1995. "A proposal on improved procedures for estimating task-time distributions in PERT," European Journal of Operational Research, Elsevier, vol. 85(1), pages 39-52, August.
    15. Xiong, Jian & Leus, Roel & Yang, Zhenyu & Abbass, Hussein A., 2016. "Evolutionary multi-objective resource allocation and scheduling in the Chinese navigation satellite system project," European Journal of Operational Research, Elsevier, vol. 251(2), pages 662-675.
    16. Rostami, Salim & Creemers, Stefan & Leus, Roel, 2024. "Maximizing the net present value of a project under uncertainty: Activity delays and dynamic policies," European Journal of Operational Research, Elsevier, vol. 317(1), pages 16-24.
    17. Jorge I. Figueroa-Zúñiga & Cristian L. Bayes & Víctor Leiva & Shuangzhe Liu, 2022. "Robust beta regression modeling with errors-in-variables: a Bayesian approach and numerical applications," Statistical Papers, Springer, vol. 63(3), pages 919-942, June.
    18. Moayyad Al-Fawaeer & Abdul Sattar Al-Ali & Mousa Khaireddin, 2021. "The Impact of Changing the Expected Time and Variance Equations of the Project Activities on The Completion Time and Cost of the Project in PERT Model," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 20(2), pages 119-140, September.
    19. Nima Zoraghi & Aria Shahsavar & Babak Abbasi & Vincent Peteghem, 2017. "Multi-mode resource-constrained project scheduling problem with material ordering under bonus–penalty policies," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 49-79, April.
    20. Eugene Shragowitz & Habib Youssef & Bing Lu, 2003. "Iterative Converging Algorithms for Computing Bounds on Durations of Activities in Pert and Pert-Like Models," Journal of Combinatorial Optimization, Springer, vol. 7(1), pages 5-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:210:y:2011:i:2:p:448-451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.