IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v201y2010i2p649-651.html
   My bibliography  Save this article

A note on multiobjective second-order symmetric duality

Author

Listed:
  • Gupta, S.K.
  • Kailey, N.

Abstract

In this paper, we establish a strong duality theorem for a pair of multiobjective second-order symmetric dual programs. This removes an omission in an earlier result by Yang et al. [X.M. Yang, X.Q. Yang, K.L. Teo, S.H. Hou, Multiobjective second-order symmetric duality with F-convexity, Euro. J. Oper. Res. 165 (2005) 585-591].

Suggested Citation

  • Gupta, S.K. & Kailey, N., 2010. "A note on multiobjective second-order symmetric duality," European Journal of Operational Research, Elsevier, vol. 201(2), pages 649-651, March.
  • Handle: RePEc:eee:ejores:v:201:y:2010:i:2:p:649-651
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00185-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, X. M. & Yang, X. Q. & Teo, K. L. & Hou, S. H., 2005. "Multiobjective second-order symmetric duality with F-convexity," European Journal of Operational Research, Elsevier, vol. 165(3), pages 585-591, September.
    2. Yang, X. M. & Yang, X. Q. & Teo, K. L., 2003. "Non-differentiable second order symmetric duality in mathematical programming with F-convexity," European Journal of Operational Research, Elsevier, vol. 144(3), pages 554-559, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gulati, T.R. & Saini, Himani & Gupta, S.K., 2010. "Second-order multiobjective symmetric duality with cone constraints," European Journal of Operational Research, Elsevier, vol. 205(2), pages 247-252, September.
    2. Mishra, S.K. & Wang, S.Y. & Lai, K.K. & Yang, F.M., 2007. "Mixed symmetric duality in non-differentiable multiobjective mathematical programming," European Journal of Operational Research, Elsevier, vol. 181(1), pages 1-9, August.
    3. Mishra, S.K. & Lai, K.K., 2007. "Second order symmetric duality in multiobjective programming involving generalized cone-invex functions," European Journal of Operational Research, Elsevier, vol. 178(1), pages 20-26, April.
    4. C. Zălinescu, 2016. "On Second-Order Generalized Convexity," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 802-829, March.
    5. Mishra, S.K., 2006. "Mond-Weir type second order symmetric duality in non-differentiable minimax mixed integer programming problems," European Journal of Operational Research, Elsevier, vol. 170(2), pages 355-362, April.
    6. S. Gupta & N. Kailey, 2013. "Second-order multiobjective symmetric duality involving cone-bonvex functions," Journal of Global Optimization, Springer, vol. 55(1), pages 125-140, January.
    7. Yang, X. M. & Yang, X. Q. & Teo, K. L. & Hou, S. H., 2005. "Second order symmetric duality in non-differentiable multiobjective programming with F-convexity," European Journal of Operational Research, Elsevier, vol. 164(2), pages 406-416, July.
    8. Mishra, S. K., 2005. "Non-differentiable higher-order symmetric duality in mathematical programming with generalized invexity," European Journal of Operational Research, Elsevier, vol. 167(1), pages 28-34, November.
    9. Ahmad, I. & Husain, Z., 2010. "On multiobjective second order symmetric duality with cone constraints," European Journal of Operational Research, Elsevier, vol. 204(3), pages 402-409, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:201:y:2010:i:2:p:649-651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.