IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v201y2010i2p365-376.html
   My bibliography  Save this article

A proximal method with separable Bregman distances for quasiconvex minimization over the nonnegative orthant

Author

Listed:
  • Souza, Sissy da S.
  • Oliveira, P.R.
  • da Cruz Neto, J.X.
  • Soubeyran, A.

Abstract

We present an interior proximal method with Bregman distance, for solving the minimization problem with quasiconvex objective function under nonnegative constraints. The Bregman function is considered separable and zone coercive, and the zone is the interior of the positive orthant. Under the assumption that the solution set is nonempty and the objective function is continuously differentiable, we establish the well definedness of the sequence generated by our algorithm and obtain two important convergence results, and show in the main one that the sequence converges to a solution point of the problem when the regularization parameters go to zero.

Suggested Citation

  • Souza, Sissy da S. & Oliveira, P.R. & da Cruz Neto, J.X. & Soubeyran, A., 2010. "A proximal method with separable Bregman distances for quasiconvex minimization over the nonnegative orthant," European Journal of Operational Research, Elsevier, vol. 201(2), pages 365-376, March.
  • Handle: RePEc:eee:ejores:v:201:y:2010:i:2:p:365-376
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00146-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Charles Byrne & Yair Censor, 2001. "Proximity Function Minimization Using Multiple Bregman Projections, with Applications to Split Feasibility and Kullback–Leibler Distance Minimization," Annals of Operations Research, Springer, vol. 105(1), pages 77-98, July.
    2. Mas-Colell, Andreu & Whinston, Michael D. & Green, Jerry R., 1995. "Microeconomic Theory," OUP Catalogue, Oxford University Press, number 9780195102680.
    3. H. Attouch & M. Teboulle, 2004. "Regularized Lotka-Volterra Dynamical System as Continuous Proximal-Like Method in Optimization," Journal of Optimization Theory and Applications, Springer, vol. 121(3), pages 541-570, June.
    4. Jonathan Eckstein, 1993. "Nonlinear Proximal Point Algorithms Using Bregman Functions, with Applications to Convex Programming," Mathematics of Operations Research, INFORMS, vol. 18(1), pages 202-226, February.
    5. Alfred Auslender & Marc Teboulle & Sami Ben-Tiba, 1999. "Interior Proximal and Multiplier Methods Based on Second Order Homogeneous Kernels," Mathematics of Operations Research, INFORMS, vol. 24(3), pages 645-668, August.
    6. M. V. Solodov & B. F. Svaiter, 2000. "An Inexact Hybrid Generalized Proximal Point Algorithm and Some New Results on the Theory of Bregman Functions," Mathematics of Operations Research, INFORMS, vol. 25(2), pages 214-230, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Regina S. Burachik & Yaohua Hu & Xiaoqi Yang, 2022. "Interior quasi-subgradient method with non-Euclidean distances for constrained quasi-convex optimization problems in hilbert spaces," Journal of Global Optimization, Springer, vol. 83(2), pages 249-271, June.
    2. Arnaldo S. Brito & J. X. Cruz Neto & Jurandir O. Lopes & P. Roberto Oliveira, 2012. "Interior Proximal Algorithm for Quasiconvex Programming Problems and Variational Inequalities with Linear Constraints," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 217-234, July.
    3. E. A. Papa Quiroz & S. Cruzado, 2022. "An inexact scalarization proximal point method for multiobjective quasiconvex minimization," Annals of Operations Research, Springer, vol. 316(2), pages 1445-1470, September.
    4. Papa Quiroz, E.A. & Mallma Ramirez, L. & Oliveira, P.R., 2015. "An inexact proximal method for quasiconvex minimization," European Journal of Operational Research, Elsevier, vol. 246(3), pages 721-729.
    5. Papa Quiroz, E.A. & Roberto Oliveira, P., 2012. "An extension of proximal methods for quasiconvex minimization on the nonnegative orthant," European Journal of Operational Research, Elsevier, vol. 216(1), pages 26-32.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Papa Quiroz, E.A. & Roberto Oliveira, P., 2012. "An extension of proximal methods for quasiconvex minimization on the nonnegative orthant," European Journal of Operational Research, Elsevier, vol. 216(1), pages 26-32.
    2. Papa Quiroz, E.A. & Mallma Ramirez, L. & Oliveira, P.R., 2015. "An inexact proximal method for quasiconvex minimization," European Journal of Operational Research, Elsevier, vol. 246(3), pages 721-729.
    3. Jonathan Eckstein & Paulo Silva, 2010. "Proximal methods for nonlinear programming: double regularization and inexact subproblems," Computational Optimization and Applications, Springer, vol. 46(2), pages 279-304, June.
    4. Emanuel Laude & Peter Ochs & Daniel Cremers, 2020. "Bregman Proximal Mappings and Bregman–Moreau Envelopes Under Relative Prox-Regularity," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 724-761, March.
    5. M. Kyono & M. Fukushima, 2000. "Nonlinear Proximal Decomposition Method for Convex Programming," Journal of Optimization Theory and Applications, Springer, vol. 106(2), pages 357-372, August.
    6. Regina S. Burachik & Minh N. Dao & Scott B. Lindstrom, 2021. "Generalized Bregman Envelopes and Proximity Operators," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 744-778, September.
    7. Nils Langenberg, 2012. "An Interior Proximal Method for a Class of Quasimonotone Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 902-922, December.
    8. Xin Jiang & Lieven Vandenberghe, 2023. "Bregman Three-Operator Splitting Methods," Journal of Optimization Theory and Applications, Springer, vol. 196(3), pages 936-972, March.
    9. A. Auslender & M. Teboulle, 2004. "Interior Gradient and Epsilon-Subgradient Descent Methods for Constrained Convex Minimization," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 1-26, February.
    10. Regina Sandra Burachik & B. F. Svaiter, 2001. "A Relative Error Tolerance for a Family of Generalized Proximal Point Methods," Mathematics of Operations Research, INFORMS, vol. 26(4), pages 816-831, November.
    11. Arnaldo S. Brito & J. X. Cruz Neto & Jurandir O. Lopes & P. Roberto Oliveira, 2012. "Interior Proximal Algorithm for Quasiconvex Programming Problems and Variational Inequalities with Linear Constraints," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 217-234, July.
    12. E. A. Papa Quiroz & S. Cruzado, 2022. "An inexact scalarization proximal point method for multiobjective quasiconvex minimization," Annals of Operations Research, Springer, vol. 316(2), pages 1445-1470, September.
    13. Wright, Austin L. & Sonin, Konstantin & Driscoll, Jesse & Wilson, Jarnickae, 2020. "Poverty and economic dislocation reduce compliance with COVID-19 shelter-in-place protocols," Journal of Economic Behavior & Organization, Elsevier, vol. 180(C), pages 544-554.
    14. Janvier D. Nkurunziza, 2005. "Reputation and Credit without Collateral in Africa`s Formal Banking," Economics Series Working Papers WPS/2005-02, University of Oxford, Department of Economics.
    15. Vadim Borokhov, 2014. "On the properties of nodal price response matrix in electricity markets," Papers 1404.3678, arXiv.org, revised Jan 2015.
    16. Gan, Li & Ju, Gaosheng & Zhu, Xi, 2015. "Nonparametric estimation of structural labor supply and exact welfare change under nonconvex piecewise-linear budget sets," Journal of Econometrics, Elsevier, vol. 188(2), pages 526-544.
    17. Peterson, Jeffrey M. & Boisvert, Richard N. & de Gorter, Harry, 1999. "Multifunctionality and Optimal Environmental Policies for Agriculture in an Open Economy," Working Papers 127701, Cornell University, Department of Applied Economics and Management.
    18. Aldasoro, Iñaki & Delli Gatti, Domenico & Faia, Ester, 2017. "Bank networks: Contagion, systemic risk and prudential policy," Journal of Economic Behavior & Organization, Elsevier, vol. 142(C), pages 164-188.
    19. Gatti, Nicolas & Cecil, Michael & Baylis, Kathy & Estes, Lyndon & Blekking, Jordan & Heckelei, Thomas & Vergopolan, Noemi & Evans, Tom, 2023. "Is closing the agricultural yield gap a “risky” endeavor?," Agricultural Systems, Elsevier, vol. 208(C).
    20. Chorvat, Terrence, 2006. "Taxing utility," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 35(1), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:201:y:2010:i:2:p:365-376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.