IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v197y2009i1p50-58.html
   My bibliography  Save this article

Capturing incomplete information in resource allocation problems through numerical patterns

Author

Listed:
  • Marar, Arun
  • Powell, Warren B.

Abstract

We look at the problem of optimizing complex operations with incomplete information where the missing information is revealed indirectly and imperfectly through historical decisions. Incomplete information is characterized by missing data elements governing operational behavior and unknown cost parameters. We assume some of this information may be indirectly captured in historical databases through flows characterizing resource movements. We can use these flows or other quantities derived from these flows as "numerical patterns" in our optimization model to reflect some of the incomplete information. We develop our methodology for representing information in resource allocation models using the concept of pattern regression. We use a popular goodness-of-fit measure known as the Cramer-Von Mises metric as the foundation of our approach. We then use a hybrid approach of solving a cost model with a term known as the "pattern metric" that minimizes the deviations of model decisions from observed quantities in a historical database. We present a novel iterative method to solve this problem. Results with real-world data from a large freight railroad are presented.

Suggested Citation

  • Marar, Arun & Powell, Warren B., 2009. "Capturing incomplete information in resource allocation problems through numerical patterns," European Journal of Operational Research, Elsevier, vol. 197(1), pages 50-58, August.
  • Handle: RePEc:eee:ejores:v:197:y:2009:i:1:p:50-58
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00467-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hugo P. Simão & Abraham George & Warren B. Powell & Ted Gifford & John Nienow & Jeff Day, 2010. "Approximate Dynamic Programming Captures Fleet Operations for Schneider National," Interfaces, INFORMS, vol. 40(5), pages 342-352, October.
    2. Piu, F. & Prem Kumar, V. & Bierlaire, M. & Speranza, M.G., 2015. "Introducing a preliminary consists selection in the locomotive assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 217-237.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:197:y:2009:i:1:p:50-58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.