IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v189y2008i3p638-651.html
   My bibliography  Save this article

An evolutionary approach for bandwidth multicoloring problems

Author

Listed:
  • Malaguti, Enrico
  • Toth, Paolo

Abstract

In this paper we consider some generalizations of the vertex coloring problem, where distance constraints are imposed between adjacent vertices (bandwidth coloring problem) and each vertex has to be colored with more than one color (bandwidth multicoloring problem). We propose an evolutionary metaheuristic approach for the first problem, combining an effective tabu search algorithm with population management procedures. The approach can be applied to the second problem as well, after a simple transformation. Computational results on instances from the literature show that the overall algorithm is able to produce high quality solutions in a reasonable amount of time, outperforming the most effective algorithms proposed for the bandwidth coloring problem, and improving the best known solution of many instances of the bandwidth multicoloring problem.

Suggested Citation

  • Malaguti, Enrico & Toth, Paolo, 2008. "An evolutionary approach for bandwidth multicoloring problems," European Journal of Operational Research, Elsevier, vol. 189(3), pages 638-651, September.
  • Handle: RePEc:eee:ejores:v:189:y:2008:i:3:p:638-651
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(06)01174-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David S. Johnson & Cecilia R. Aragon & Lyle A. McGeoch & Catherine Schevon, 1991. "Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning," Operations Research, INFORMS, vol. 39(3), pages 378-406, June.
    2. Philippe Galinier & Jin-Kao Hao, 1999. "Hybrid Evolutionary Algorithms for Graph Coloring," Journal of Combinatorial Optimization, Springer, vol. 3(4), pages 379-397, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sinjorgo, Lennart & Sotirov, Renata, 2022. "On the generalized ϑ-number and related problems for highly symmetric graphs," Other publications TiSEM 82d3dc18-0258-4f07-9b7f-d, Tilburg University, School of Economics and Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolas Zufferey & Olivier Labarthe & David Schindl, 2012. "Heuristics for a project management problem with incompatibility and assignment costs," Computational Optimization and Applications, Springer, vol. 51(3), pages 1231-1252, April.
    2. Xiao-Feng Xie & Jiming Liu, 2009. "Graph coloring by multiagent fusion search," Journal of Combinatorial Optimization, Springer, vol. 18(2), pages 99-123, August.
    3. M Plumettaz & D Schindl & N Zufferey, 2010. "Ant Local Search and its efficient adaptation to graph colouring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(5), pages 819-826, May.
    4. Laurent Moalic & Alexandre Gondran, 2018. "Variations on memetic algorithms for graph coloring problems," Journal of Heuristics, Springer, vol. 24(1), pages 1-24, February.
    5. C A Glass & A Prügel-Bennett, 2005. "A polynomially searchable exponential neighbourhood for graph colouring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(3), pages 324-330, March.
    6. Valmir C. Barbosa & Carlos A.G. Assis & Josina O. Do Nascimento, 2004. "Two Novel Evolutionary Formulations of the Graph Coloring Problem," Journal of Combinatorial Optimization, Springer, vol. 8(1), pages 41-63, March.
    7. Enrico Malaguti & Michele Monaci & Paolo Toth, 2008. "A Metaheuristic Approach for the Vertex Coloring Problem," INFORMS Journal on Computing, INFORMS, vol. 20(2), pages 302-316, May.
    8. Bradley Hardy & Rhyd Lewis & Jonathan Thompson, 2018. "Tackling the edge dynamic graph colouring problem with and without future adjacency information," Journal of Heuristics, Springer, vol. 24(3), pages 321-343, June.
    9. Lü, Zhipeng & Hao, Jin-Kao, 2010. "A memetic algorithm for graph coloring," European Journal of Operational Research, Elsevier, vol. 203(1), pages 241-250, May.
    10. Caramia, Massimiliano & Dell'Olmo, Paolo, 2008. "Embedding a novel objective function in a two-phased local search for robust vertex coloring," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1358-1380, September.
    11. Severino F. Galán, 2017. "Simple decentralized graph coloring," Computational Optimization and Applications, Springer, vol. 66(1), pages 163-185, January.
    12. Vincenzo Cutello & Giuseppe Nicosia & Mario Pavone, 2007. "An immune algorithm with stochastic aging and kullback entropy for the chromatic number problem," Journal of Combinatorial Optimization, Springer, vol. 14(1), pages 9-33, July.
    13. Celia A. Glass & Adam Prügel-Bennett, 2003. "Genetic Algorithm for Graph Coloring: Exploration of Galinier and Hao's Algorithm," Journal of Combinatorial Optimization, Springer, vol. 7(3), pages 229-236, September.
    14. Avanthay, Cedric & Hertz, Alain & Zufferey, Nicolas, 2003. "A variable neighborhood search for graph coloring," European Journal of Operational Research, Elsevier, vol. 151(2), pages 379-388, December.
    15. Iztok Fister & Marjan Mernik & Bogdan Filipič, 2013. "Graph 3-coloring with a hybrid self-adaptive evolutionary algorithm," Computational Optimization and Applications, Springer, vol. 54(3), pages 741-770, April.
    16. Olawale Titiloye & Alan Crispin, 2012. "Parameter Tuning Patterns for Random Graph Coloring with Quantum Annealing," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-9, November.
    17. Philippe Galinier & Zied Boujbel & Michael Coutinho Fernandes, 2011. "An efficient memetic algorithm for the graph partitioning problem," Annals of Operations Research, Springer, vol. 191(1), pages 1-22, November.
    18. Alex Gliesch & Marcus Ritt, 2022. "A new heuristic for finding verifiable k-vertex-critical subgraphs," Journal of Heuristics, Springer, vol. 28(1), pages 61-91, February.
    19. Goodson, Justin C. & Ohlmann, Jeffrey W. & Thomas, Barrett W., 2012. "Cyclic-order neighborhoods with application to the vehicle routing problem with stochastic demand," European Journal of Operational Research, Elsevier, vol. 217(2), pages 312-323.
    20. Jagota, Arun, 1996. "An adaptive, multiple restarts neural network algorithm for graph coloring," European Journal of Operational Research, Elsevier, vol. 93(2), pages 257-270, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:189:y:2008:i:3:p:638-651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.