IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v176y2007i3p1767-1777.html
   My bibliography  Save this article

Using genetic algorithm for dynamic and multiple criteria web-site optimizations

Author

Listed:
  • Asllani, Arben
  • Lari, Alireza

Abstract

No abstract is available for this item.

Suggested Citation

  • Asllani, Arben & Lari, Alireza, 2007. "Using genetic algorithm for dynamic and multiple criteria web-site optimizations," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1767-1777, February.
  • Handle: RePEc:eee:ejores:v:176:y:2007:i:3:p:1767-1777
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(05)00887-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Neppalli, Venkata Ranga & Chen, Chuen-Lung & Gupta, Jatinder N. D., 1996. "Genetic algorithms for the two-stage bicriteria flowshop problem," European Journal of Operational Research, Elsevier, vol. 95(2), pages 356-373, December.
    2. David Maxwell Chickering & David Heckerman, 2003. "Targeted Advertising on the Web with Inventory Management," Interfaces, INFORMS, vol. 33(5), pages 71-77, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Besseris, George J., 2015. "Concurrent multiresponse non-linear screening: Robust profiling of webpage performance," European Journal of Operational Research, Elsevier, vol. 241(1), pages 161-176.
    2. Ballings, Michel & Van den Poel, Dirk & Bogaert, Matthias, 2016. "Social media optimization: Identifying an optimal strategy for increasing network size on Facebook," Omega, Elsevier, vol. 59(PA), pages 15-25.
    3. Jozef Kapusta & Michal Munk & Martin Drlik, 2018. "Website Structure Improvement Based on the Combination of Selected Web Structure and Web Usage Mining Methods," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(06), pages 1743-1776, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Hojjat & John Turner & Suleyman Cetintas & Jian Yang, 2017. "A Unified Framework for the Scheduling of Guaranteed Targeted Display Advertising Under Reach and Frequency Requirements," Operations Research, INFORMS, vol. 65(2), pages 289-313, April.
    2. Vincent T’kindt & Karima Bouibede-Hocine & Carl Esswein, 2007. "Counting and enumeration complexity with application to multicriteria scheduling," Annals of Operations Research, Springer, vol. 153(1), pages 215-234, September.
    3. E. Dhouib & J. Teghem & T. Loukil, 2018. "Non-permutation flowshop scheduling problem with minimal and maximal time lags: theoretical study and heuristic," Annals of Operations Research, Springer, vol. 267(1), pages 101-134, August.
    4. Koksalan, Murat & Burak Keha, Ahmet, 2003. "Using genetic algorithms for single-machine bicriteria scheduling problems," European Journal of Operational Research, Elsevier, vol. 145(3), pages 543-556, March.
    5. Shinjini Pandey & Goutam Dutta & Harit Joshi, 2017. "Survey on Revenue Management in Media and Broadcasting," Interfaces, INFORMS, vol. 47(3), pages 195-213, June.
    6. Lee, Sang M. & Asllani, Arben A., 2004. "Job scheduling with dual criteria and sequence-dependent setups: mathematical versus genetic programming," Omega, Elsevier, vol. 32(2), pages 145-153, April.
    7. Esther Gal-Or & Mordechai Gal-Or, 2005. "Customized Advertising via a Common Media Distributor," Marketing Science, INFORMS, vol. 24(2), pages 241-253, July.
    8. Zhou, Xuesong & Zhong, Ming, 2005. "Bicriteria train scheduling for high-speed passenger railroad planning applications," European Journal of Operational Research, Elsevier, vol. 167(3), pages 752-771, December.
    9. He, Li-Jun & Ju, Xue-Wei & Zhang, Wei-Bo, 2018. "A fitness assignment strategy based on the grey and entropy parallel analysis and its application to MOEAAuthor-Name: Zhu, Guang-Yu," European Journal of Operational Research, Elsevier, vol. 265(3), pages 813-828.
    10. Yenisey, Mehmet Mutlu & Yagmahan, Betul, 2014. "Multi-objective permutation flow shop scheduling problem: Literature review, classification and current trends," Omega, Elsevier, vol. 45(C), pages 119-135.
    11. Manmohan Aseri & Milind Dawande & Ganesh Janakiraman & Vijay Mookerjee, 2018. "Procurement Policies for Mobile-Promotion Platforms," Management Science, INFORMS, vol. 64(10), pages 4590-4607, October.
    12. Sami Najafi-Asadolahi & Kristin Fridgeirsdottir, 2014. "Cost-per-Click Pricing for Display Advertising," Manufacturing & Service Operations Management, INFORMS, vol. 16(4), pages 482-497, October.
    13. Gerardo Minella & Rubén Ruiz & Michele Ciavotta, 2008. "A Review and Evaluation of Multiobjective Algorithms for the Flowshop Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 451-471, August.
    14. Allahverdi, Ali, 2003. "The two- and m-machine flowshop scheduling problems with bicriteria of makespan and mean flowtime," European Journal of Operational Research, Elsevier, vol. 147(2), pages 373-396, June.
    15. Chang, Pei-Chann & Hsieh, Jih-Chang & Lin, Shui-Geng, 2002. "The development of gradual-priority weighting approach for the multi-objective flowshop scheduling problem," International Journal of Production Economics, Elsevier, vol. 79(3), pages 171-183, October.
    16. Shen, Yuelin, 2018. "Pricing contracts and planning stochastic resources in brand display advertising," Omega, Elsevier, vol. 81(C), pages 183-194.
    17. Hana Choi & Carl F. Mela & Santiago R. Balseiro & Adam Leary, 2020. "Online Display Advertising Markets: A Literature Review and Future Directions," Information Systems Research, INFORMS, vol. 31(2), pages 556-575, June.
    18. Lili Hai & Lan Zhao & Anna Nagurney, 2010. "An integrated framework for the design of optimal web banners," Netnomics, Springer, vol. 11(1), pages 69-83, April.
    19. Gupta, Jatinder N. D. & Neppalli, Venkata R. & Werner, Frank, 2001. "Minimizing total flow time in a two-machine flowshop problem with minimum makespan," International Journal of Production Economics, Elsevier, vol. 69(3), pages 323-338, February.
    20. Loukil, T. & Teghem, J. & Tuyttens, D., 2005. "Solving multi-objective production scheduling problems using metaheuristics," European Journal of Operational Research, Elsevier, vol. 161(1), pages 42-61, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:176:y:2007:i:3:p:1767-1777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.