IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v175y2006i2p959-976.html
   My bibliography  Save this article

A variable neighborhood decomposition search method for supply chain management planning problems

Author

Listed:
  • Lejeune, M.A.

Abstract

No abstract is available for this item.

Suggested Citation

  • Lejeune, M.A., 2006. "A variable neighborhood decomposition search method for supply chain management planning problems," European Journal of Operational Research, Elsevier, vol. 175(2), pages 959-976, December.
  • Handle: RePEc:eee:ejores:v:175:y:2006:i:2:p:959-976
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(05)00513-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tony J. Van Roy, 1989. "Multi-Level Production and Distribution Planning with Transportation Fleet Optimization," Management Science, INFORMS, vol. 35(12), pages 1443-1453, December.
    2. Blumenfeld, Dennis E. & Burns, Lawrence D. & Daganzo, Carlos F., 1991. "Synchronizing production and transportation schedules," Transportation Research Part B: Methodological, Elsevier, vol. 25(1), pages 23-37, February.
    3. Vidal, Carlos J. & Goetschalckx, Marc, 1997. "Strategic production-distribution models: A critical review with emphasis on global supply chain models," European Journal of Operational Research, Elsevier, vol. 98(1), pages 1-18, April.
    4. Lokketangen, Arne & Glover, Fred, 1998. "Solving zero-one mixed integer programming problems using tabu search," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 624-658, April.
    5. Hansen, Pierre & Mladenovic, Nenad, 2001. "Variable neighborhood search: Principles and applications," European Journal of Operational Research, Elsevier, vol. 130(3), pages 449-467, May.
    6. Van Buer, Michael G. & Woodruff, David L. & Olson, Rick T., 1999. "Solving the medium newspaper production/distribution problem," European Journal of Operational Research, Elsevier, vol. 115(2), pages 237-253, June.
    7. Paul Glasserman & Yashan Wang, 1999. "Fill-Rate Bottlenecks in Production-Inventory Networks," Manufacturing & Service Operations Management, INFORMS, vol. 1(1), pages 62-76.
    8. Robert Fourer & David M. Gay, 2002. "Extending an Algebraic Modeling Language to Support Constraint Programming," INFORMS Journal on Computing, INFORMS, vol. 14(4), pages 322-344, November.
    9. John O. McClain & Joseph Thomas, 1977. "Horizon Effects in Aggregate Production Planning with Seasonal Demand," Management Science, INFORMS, vol. 23(7), pages 728-736, March.
    10. Wagle, B. V., 1977. "Corporate planning in local authorities," European Journal of Operational Research, Elsevier, vol. 1(4), pages 211-224, July.
    11. Thomas, Douglas J. & Griffin, Paul M., 1996. "Coordinated supply chain management," European Journal of Operational Research, Elsevier, vol. 94(1), pages 1-15, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Quanxi Li & Haowei Zhang & Kailing Liu, 2021. "Research on Closed-Loop Supply Chain Decision-Making in Different Cooperation Modes with Government’s Reward-Penalty Mechanism," Sustainability, MDPI, vol. 13(11), pages 1-22, June.
    2. Anghinolfi, D. & Paolucci, M. & Sacone, S. & Siri, S., 2011. "Freight transportation in railway networks with automated terminals: A mathematical model and MIP heuristic approaches," European Journal of Operational Research, Elsevier, vol. 214(3), pages 588-594, November.
    3. Masoud Esmaeilikia & Behnam Fahimnia & Joeseph Sarkis & Kannan Govindan & Arun Kumar & John Mo, 2016. "A tactical supply chain planning model with multiple flexibility options: an empirical evaluation," Annals of Operations Research, Springer, vol. 244(2), pages 429-454, September.
    4. Yin, Jiateng & D’Ariano, Andrea & Wang, Yihui & Yang, Lixing & Tang, Tao, 2021. "Timetable coordination in a rail transit network with time-dependent passenger demand," European Journal of Operational Research, Elsevier, vol. 295(1), pages 183-202.
    5. Michael Brusco & Renu Singh & Douglas Steinley, 2009. "Variable Neighborhood Search Heuristics for Selecting a Subset of Variables in Principal Component Analysis," Psychometrika, Springer;The Psychometric Society, vol. 74(4), pages 705-726, December.
    6. Maiyar, Lohithaksha M. & Thakkar, Jitesh J., 2019. "Modelling and analysis of intermodal food grain transportation under hub disruption towards sustainability," International Journal of Production Economics, Elsevier, vol. 217(C), pages 281-297.
    7. Hassini, Elkafi & Surti, Chirag & Searcy, Cory, 2012. "A literature review and a case study of sustainable supply chains with a focus on metrics," International Journal of Production Economics, Elsevier, vol. 140(1), pages 69-82.
    8. Masoud Esmaeilikia & Behnam Fahimnia & Joeseph Sarkis & Kannan Govindan & Arun Kumar & John Mo, 2016. "Tactical supply chain planning models with inherent flexibility: definition and review," Annals of Operations Research, Springer, vol. 244(2), pages 407-427, September.
    9. Sasan Khalifehzadeh & Mehdi Seifbarghy & Bahman Naderi, 2017. "Solving a fuzzy multi objective model of a production–distribution system using meta-heuristic based approaches," Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 95-109, January.
    10. Barbosa-Póvoa, Ana Paula & da Silva, Cátia & Carvalho, Ana, 2018. "Opportunities and challenges in sustainable supply chain: An operations research perspective," European Journal of Operational Research, Elsevier, vol. 268(2), pages 399-431.
    11. Devika, K. & Jafarian, A. & Nourbakhsh, V., 2014. "Designing a sustainable closed-loop supply chain network based on triple bottom line approach: A comparison of metaheuristics hybridization techniques," European Journal of Operational Research, Elsevier, vol. 235(3), pages 594-615.
    12. Fariba Goodarzian & Ali Navaei & Behdad Ehsani & Peiman Ghasemi & Jesús Muñuzuri, 2023. "Designing an integrated responsive-green-cold vaccine supply chain network using Internet-of-Things: artificial intelligence-based solutions," Annals of Operations Research, Springer, vol. 328(1), pages 531-575, September.
    13. Pierre Hansen & Nenad Mladenović & José Moreno Pérez, 2010. "Variable neighbourhood search: methods and applications," Annals of Operations Research, Springer, vol. 175(1), pages 367-407, March.
    14. Srikant Gupta & Irfan Ali & Aquil Ahmed, 2018. "Multi-objective bi-level supply chain network order allocation problem under fuzziness," OPSEARCH, Springer;Operational Research Society of India, vol. 55(3), pages 721-748, November.
    15. Xiong, Fuli & Xing, Keyi & Wang, Feng, 2015. "Scheduling a hybrid assembly-differentiation flowshop to minimize total flow time," European Journal of Operational Research, Elsevier, vol. 240(2), pages 338-354.
    16. Yang Lv & Xinhua Bi & Quanxi Li & Haowei Zhang, 2022. "Research on Closed-Loop Supply Chain Decision Making and Recycling Channel Selection under Carbon Allowance and Carbon Trading," Sustainability, MDPI, vol. 14(18), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eskigun, Erdem & Uzsoy, Reha & Preckel, Paul V. & Beaujon, George & Krishnan, Subramanian & Tew, Jeffrey D., 2005. "Outbound supply chain network design with mode selection, lead times and capacitated vehicle distribution centers," European Journal of Operational Research, Elsevier, vol. 165(1), pages 182-206, August.
    2. Kai-Leung Yung & Jiafu Tang & Andrew W. H. Ip & Dingwei Wang, 2006. "Heuristics for Joint Decisions in Production, Transportation, and Order Quantity," Transportation Science, INFORMS, vol. 40(1), pages 99-116, February.
    3. Ullrich, Christian A., 2013. "Integrated machine scheduling and vehicle routing with time windows," European Journal of Operational Research, Elsevier, vol. 227(1), pages 152-165.
    4. Hein, Fanny & Almeder, Christian, 2016. "Quantitative insights into the integrated supply vehicle routing and production planning problem," International Journal of Production Economics, Elsevier, vol. 177(C), pages 66-76.
    5. Hiroko Nakamura & Shinji Suzuki & Tomobe Hironori & Yuya Kajikawa & Ichiro Sakata, 2011. "Citation lag analysis in supply chain research," Scientometrics, Springer;Akadémiai Kiadó, vol. 87(2), pages 221-232, May.
    6. Olivares-Benitez, Elias & Ríos-Mercado, Roger Z. & González-Velarde, José Luis, 2013. "A metaheuristic algorithm to solve the selection of transportation channels in supply chain design," International Journal of Production Economics, Elsevier, vol. 145(1), pages 161-172.
    7. Zakaria Chekoubi & Wajdi Trabelsi & Nathalie Sauer & Ilias Majdouline, 2022. "The Integrated Production-Inventory-Routing Problem with Reverse Logistics and Remanufacturing: A Two-Phase Decomposition Heuristic," Sustainability, MDPI, vol. 14(20), pages 1-30, October.
    8. Anton J. Kleywegt & Vijay S. Nori & Martin W. P. Savelsbergh, 2002. "The Stochastic Inventory Routing Problem with Direct Deliveries," Transportation Science, INFORMS, vol. 36(1), pages 94-118, February.
    9. Daniel Schubert & André Scholz & Gerhard Wäscher, 2017. "Integrated Order Picking and Vehicle Routing with Due Dates," FEMM Working Papers 170007, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    10. Govindan, K. & Jafarian, A. & Khodaverdi, R. & Devika, K., 2014. "Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food," International Journal of Production Economics, Elsevier, vol. 152(C), pages 9-28.
    11. Wang, Juite & Shu, Yun-Feng, 2007. "A possibilistic decision model for new product supply chain design," European Journal of Operational Research, Elsevier, vol. 177(2), pages 1044-1061, March.
    12. Vanovermeire, Christine & Sörensen, Kenneth, 2014. "Integration of the cost allocation in the optimization of collaborative bundling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 125-143.
    13. Jabbarzadeh, Armin & Fahimnia, Behnam & Sheu, Jiuh-Biing, 2017. "An enhanced robustness approach for managing supply and demand uncertainties," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 620-631.
    14. Ahumada, Omar & Villalobos, J. Rene, 2009. "Application of planning models in the agri-food supply chain: A review," European Journal of Operational Research, Elsevier, vol. 196(1), pages 1-20, July.
    15. Erdem Eskigun & Reha Uzsoy & Paul V. Preckel & George Beaujon & Subramanian Krishnan & Jeffrey D. Tew, 2007. "Outbound supply chain network design with mode selection and lead time considerations," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(3), pages 282-300, April.
    16. Amy David & David Farr & Ross Januszyk & Urmila Diwekar, 2015. "USG Uses Stochastic Optimization to Lower Distribution Costs," Interfaces, INFORMS, vol. 45(3), pages 216-227, June.
    17. Mohammadi Bidhandi, Hadi & Mohd. Yusuff, Rosnah & Megat Ahmad, Megat Mohamad Hamdan & Abu Bakar, Mohd Rizam, 2009. "Development of a new approach for deterministic supply chain network design," European Journal of Operational Research, Elsevier, vol. 198(1), pages 121-128, October.
    18. Gao, Su & Qi, Lian & Lei, Lei, 2015. "Integrated batch production and distribution scheduling with limited vehicle capacity," International Journal of Production Economics, Elsevier, vol. 160(C), pages 13-25.
    19. U. Manoj & Jatinder Gupta & Sushil Gupta & Chelliah Sriskandarajah, 2008. "Supply chain scheduling: Just-in-time environment," Annals of Operations Research, Springer, vol. 161(1), pages 53-86, July.
    20. Meijboom, Bert & Obel, Børge, 2007. "Tactical coordination in a multi-location and multi-stage operations structure: A model and a pharmaceutical company case," Omega, Elsevier, vol. 35(3), pages 258-273, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:175:y:2006:i:2:p:959-976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.