IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v172y2006i3p919-930.html
   My bibliography  Save this article

Congestion network problems and related games

Author

Listed:
  • Quant, Marieke
  • Borm, Peter
  • Reijnierse, Hans

Abstract

This paper analyzes network problems with congestion effects from a cooperative game theoretic perspective.It is shown that for network problems with convex congestion costs, the corresponding games have a non-empty core.If congestion costs are concave, then the corresponding game has not necessarily core elements, but it is derived that, contrary to the convex congestion situation, there always exist optimal tree networks.Extensions of these results to a class of relaxed network problems and associated games are derived.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Quant, Marieke & Borm, Peter & Reijnierse, Hans, 2006. "Congestion network problems and related games," European Journal of Operational Research, Elsevier, vol. 172(3), pages 919-930, August.
  • Handle: RePEc:eee:ejores:v:172:y:2006:i:3:p:919-930
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(04)00834-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Suijs, Jeroen, 2003. "Cost allocation in spanning network enterprises with stochastic connection costs," Games and Economic Behavior, Elsevier, vol. 42(1), pages 156-171, January.
    2. Peter Borm & Herbert Hamers & Ruud Hendrickx, 2001. "Operations research games: A survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 9(2), pages 139-199, December.
    3. Dominique Henriet & Herve' Moulin, 1996. "Traffic-Based Cost Allocation in a Network," RAND Journal of Economics, The RAND Corporation, vol. 27(2), pages 332-345, Summer.
    4. Feltkamp, V. & Tijs, S.H. & Muto, S., 1994. "On the irreducible core and the equal remaining obligations rule of minimum cost spanning extension problems," Other publications TiSEM 56ea8c64-a05f-4b3f-ab61-9, Tilburg University, School of Economics and Management.
    5. Voorneveld, M., 1999. "Potential games and interactive decisions with multiple criteria," Other publications TiSEM 29d7b372-7a4e-4db7-b66c-f, Tilburg University, School of Economics and Management.
    6. Feltkamp, V. & Tijs, S.H. & Muto, S., 1994. "On the irreducible core and the equal remaining obligations rule of minimum cost spanning extension problems," Discussion Paper 1994-106, Tilburg University, Center for Economic Research.
    7. Lloyd S. Shapley, 1967. "On balanced sets and cores," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 14(4), pages 453-460.
    8. Stefano Moretti & Rodica Branzei & Henk Norde & Stef Tijs, 2004. "The P-value for cost sharing in minimum," Theory and Decision, Springer, vol. 56(1), pages 47-61, April.
    9. Feltkamp, V. & Tijs, S.H. & Muto, S., 1994. "Minimum cost spanning extension problems : The proportional rule and the decentralized rule," Other publications TiSEM 2c6cd46b-7e72-4262-a479-3, Tilburg University, School of Economics and Management.
    10. Kar, Anirban, 2002. "Axiomatization of the Shapley Value on Minimum Cost Spanning Tree Games," Games and Economic Behavior, Elsevier, vol. 38(2), pages 265-277, February.
    11. Brânzei, R. & Moretti, S. & Norde, H.W. & Tijs, S.H., 2003. "The P-Value for Cost Sharing in Minimum Cost Spanning Tree Situations," Discussion Paper 2003-129, Tilburg University, Center for Economic Research.
    12. Matsubayashi, Nobuo & Umezawa, Masashi & Masuda, Yasushi & Nishino, Hisakazu, 2005. "A cost allocation problem arising in hub-spoke network systems," European Journal of Operational Research, Elsevier, vol. 160(3), pages 821-838, February.
    13. Brânzei, R. & Moretti, S. & Norde, H.W. & Tijs, S.H., 2003. "The P-Value for Cost Sharing in Minimum Cost Spanning Tree Situations," Other publications TiSEM de0e437c-1588-469d-a2ff-a, Tilburg University, School of Economics and Management.
    14. Monderer, Dov & Shapley, Lloyd S., 1996. "Potential Games," Games and Economic Behavior, Elsevier, vol. 14(1), pages 124-143, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eric Bahel & Christian Trudeau, 2018. "Stable cost sharing in production allocation games," Review of Economic Design, Springer;Society for Economic Design, vol. 22(1), pages 25-53, June.
    2. Leanne Streekstra & Christian Trudeau, 2024. "Stable source connection and assignment problems as multi-period shortest path problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 53(3), pages 939-975, September.
    3. Wan, Cheng, 2016. "Strategic decentralization in binary choice composite congestion games," European Journal of Operational Research, Elsevier, vol. 250(2), pages 531-542.
    4. Kleppe, J. & Reijnierse, J.H., 2007. "Public Congestion Network Situations, and Related Games," Other publications TiSEM 2ee69f43-48b2-4c19-add5-8, Tilburg University, School of Economics and Management.
    5. Quant, M. & Reijnierse, J.H., 2004. "Convex Congestion Network Problems," Other publications TiSEM 4de27e1f-abe0-40c1-8369-2, Tilburg University, School of Economics and Management.
    6. Trudeau, Christian, 2009. "Network flow problems and permutationally concave games," Mathematical Social Sciences, Elsevier, vol. 58(1), pages 121-131, July.
    7. Cheng Wan, 2016. "Strategic decentralization in binary choice composite congestion games," Post-Print hal-02885837, HAL.
    8. Kleppe, J. & Reijnierse, J.H., 2007. "Public Congestion Network Situations, and Related Games," Discussion Paper 2007-58, Tilburg University, Center for Economic Research.
    9. Bahel, Eric & Trudeau, Christian, 2019. "A cost sharing example in which subsidies are necessary for stability," Economics Letters, Elsevier, vol. 185(C).
    10. Bergantiños, G. & Gómez-Rúa, M. & Llorca, N. & Pulido, M. & Sánchez-Soriano, J., 2014. "A new rule for source connection problems," European Journal of Operational Research, Elsevier, vol. 234(3), pages 780-788.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gustavo Bergantiños & Juan Vidal-Puga, 2021. "A review of cooperative rules and their associated algorithms for minimum-cost spanning tree problems," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(1), pages 73-100, March.
    2. Bergantiños, Gustavo & Vidal-Puga, Juan, 2020. "Cooperative games for minimum cost spanning tree problems," MPRA Paper 104911, University Library of Munich, Germany.
    3. Dutta, Bhaskar & Mishra, Debasis, 2012. "Minimum cost arborescences," Games and Economic Behavior, Elsevier, vol. 74(1), pages 120-143.
    4. Tijs, S.H. & Brânzei, R. & Moretti, S. & Norde, H.W., 2004. "Obligation Rules for Minimum Cost Spanning Tree Situations and their Monotonicity Properties," Other publications TiSEM 78d24994-1074-4329-b911-c, Tilburg University, School of Economics and Management.
    5. Moretti, S. & Alparslan-Gok, S.Z. & Brânzei, R. & Tijs, S.H., 2008. "Connection Situations under Uncertainty," Other publications TiSEM e9771ffd-ce59-4b8d-a2c8-d, Tilburg University, School of Economics and Management.
    6. Moretti, S. & Tijs, S.H. & Brânzei, R. & Norde, H.W., 2005. "Cost Monotonic "Cost and Charge" Rules for Connection Situations," Other publications TiSEM 52b2694e-5a67-4fec-a46b-1, Tilburg University, School of Economics and Management.
    7. Christian Trudeau, 2014. "Linking the Kar and folk solutions through a problem separation property," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(4), pages 845-870, November.
    8. Moretti, S. & Tijs, S.H. & Brânzei, R. & Norde, H.W., 2005. "Cost Monotonic "Cost and Charge" Rules for Connection Situations," Discussion Paper 2005-104, Tilburg University, Center for Economic Research.
    9. Bogomolnaia, Anna & Moulin, Hervé, 2010. "Sharing a minimal cost spanning tree: Beyond the Folk solution," Games and Economic Behavior, Elsevier, vol. 69(2), pages 238-248, July.
    10. Moretti, S. & Alparslan-Gok, S.Z. & Brânzei, R. & Tijs, S.H., 2008. "Connection Situations under Uncertainty," Discussion Paper 2008-64, Tilburg University, Center for Economic Research.
    11. Tijs, Stef & Branzei, Rodica & Moretti, Stefano & Norde, Henk, 2006. "Obligation rules for minimum cost spanning tree situations and their monotonicity properties," European Journal of Operational Research, Elsevier, vol. 175(1), pages 121-134, November.
    12. Chun, Youngsub & Lee, Joosung, 2012. "Sequential contributions rules for minimum cost spanning tree problems," Mathematical Social Sciences, Elsevier, vol. 64(2), pages 136-143.
    13. María Gómez-Rúa & Juan Vidal-Puga, 2017. "A monotonic and merge-proof rule in minimum cost spanning tree situations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(3), pages 813-826, March.
    14. Anna Bogomolnaia & Ron Holzman & Hervé Moulin, 2010. "Sharing the Cost of a Capacity Network," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 173-192, February.
    15. Jens Hougaard & Hervé Moulin & Lars Østerdal, 2010. "Decentralized pricing in minimum cost spanning trees," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 44(2), pages 293-306, August.
    16. Liu, Siwen & Borm, Peter & Norde, Henk, 2023. "Induced Rules for Minimum Cost Spanning Tree Problems : Towards Merge-Proofness and Coalitional Stability," Discussion Paper 2023-021, Tilburg University, Center for Economic Research.
    17. Tijs, S.H. & Moretti, S. & Brânzei, R. & Norde, H.W., 2005. "The Bird Core for Minimum Cost Spanning Tree problems Revisited : Monotonicity and Additivity Aspects," Discussion Paper 2005-3, Tilburg University, Center for Economic Research.
    18. Davila-Pena, Laura & Borm, Peter & Garcia-Jurado, Ignacio & Schouten, Jop, 2023. "An Allocation Rule for Graph Machine Scheduling Problems," Discussion Paper 2023-009, Tilburg University, Center for Economic Research.
    19. Juan J. Vidal-Puga & Gustavo Bergantiños, 2004. "Defining Rules in Cost Spanning Tree Problems Through the Canonical Form," Working Papers 2004.97, Fondazione Eni Enrico Mattei.
    20. Tijs, S.H. & Moretti, S. & Brânzei, R. & Norde, H.W., 2005. "The Bird Core for Minimum Cost Spanning Tree problems Revisited : Monotonicity and Additivity Aspects," Other publications TiSEM 530f2c60-024d-4f3e-b724-1, Tilburg University, School of Economics and Management.

    More about this item

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:172:y:2006:i:3:p:919-930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.