IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v167y2005i3p696-716.html
   My bibliography  Save this article

A Multi-Objective Genetic Algorithm for mixed-model sequencing on JIT assembly lines

Author

Listed:
  • Mansouri, S. Afshin

Abstract

No abstract is available for this item.

Suggested Citation

  • Mansouri, S. Afshin, 2005. "A Multi-Objective Genetic Algorithm for mixed-model sequencing on JIT assembly lines," European Journal of Operational Research, Elsevier, vol. 167(3), pages 696-716, December.
  • Handle: RePEc:eee:ejores:v:167:y:2005:i:3:p:696-716
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(04)00473-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. George Steiner & Scott Yeomans, 1993. "Level Schedules for Mixed-Model, Just-in-Time Processes," Management Science, INFORMS, vol. 39(6), pages 728-735, June.
    2. John Miltenburg, 1989. "Level Schedules for Mixed-Model Assembly Lines in Just-In-Time Production Systems," Management Science, INFORMS, vol. 35(2), pages 192-207, February.
    3. Wieslaw Kubiak & Suresh Sethi, 1991. "A Note on "Level Schedules for Mixed-Model Assembly Lines in Just-in-Time Production Systems"," Management Science, INFORMS, vol. 37(1), pages 121-122, January.
    4. Wieslaw Kubiak & George Steiner & Julian Scott Yeomans, 1997. "Optimal level schedules for mixed-model, multi-level just-in-time assembly systems," Annals of Operations Research, Springer, vol. 69(0), pages 241-259, January.
    5. Li-Hui Tsai, 1995. "Mixed-Model Sequencing to Minimize Utility Work and the Risk of Conveyor Stoppage," Management Science, INFORMS, vol. 41(3), pages 485-495, March.
    6. Zhu, Jin & Ding, Fong-Yuen, 2000. "A transformed two-stage method for reducing the part-usage variation and a comparison of the product-level and part-level solutions in sequencing mixed-model assembly lines," European Journal of Operational Research, Elsevier, vol. 127(1), pages 203-216, November.
    7. McMullen, Patrick R., 2001. "A Kohonen self-organizing map approach to addressing a multiple objective, mixed-model JIT sequencing problem," International Journal of Production Economics, Elsevier, vol. 72(1), pages 59-71, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baoxi Wang & Zailin Guan & Saif Ullah & Xianhao Xu & Zongdong He, 2017. "Simultaneous order scheduling and mixed-model sequencing in assemble-to-order production environment: a multi-objective hybrid artificial bee colony algorithm," Journal of Intelligent Manufacturing, Springer, vol. 28(2), pages 419-436, February.
    2. Sadeghi, Parisa & Rebelo, Rui Diogo & Ferreira, José Soeiro, 2021. "Using variable neighbourhood descent and genetic algorithms for sequencing mixed-model assembly systems in the footwear industry," Operations Research Perspectives, Elsevier, vol. 8(C).
    3. Govindan, K. & Jafarian, A. & Khodaverdi, R. & Devika, K., 2014. "Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food," International Journal of Production Economics, Elsevier, vol. 152(C), pages 9-28.
    4. Mosadegh, H. & Fatemi Ghomi, S.M.T. & Süer, G.A., 2020. "Stochastic mixed-model assembly line sequencing problem: Mathematical modeling and Q-learning based simulated annealing hyper-heuristics," European Journal of Operational Research, Elsevier, vol. 282(2), pages 530-544.
    5. Giard, Vincent & Jeunet, Jully, 2010. "Optimal sequencing of mixed models with sequence-dependent setups and utility workers on an assembly line," International Journal of Production Economics, Elsevier, vol. 123(2), pages 290-300, February.
    6. Feng, Bo & Jiang, Zhong-Zhong & Fan, Zhi-Ping & Fu, Na, 2010. "A method for member selection of cross-functional teams using the individual and collaborative performances," European Journal of Operational Research, Elsevier, vol. 203(3), pages 652-661, June.
    7. Jafarian, Ahmad & Asgari, Nasrin & Mohri, Seyed Sina & Fatemi-Sadr, Elham & Farahani, Reza Zanjirani, 2019. "The inventory-routing problem subject to vehicle failure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 254-294.
    8. Ullah Saif & Zailin Guan & Li Zhang & Fei Zhang & Baoxi Wang & Jahanzaib Mirza, 2019. "Multi-objective artificial bee colony algorithm for order oriented simultaneous sequencing and balancing of multi-mixed model assembly line," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1195-1220, March.
    9. Parames Chutima & Sathaporn Olarnviwatchai, 2018. "A multi-objective car sequencing problem on two-sided assembly lines," Journal of Intelligent Manufacturing, Springer, vol. 29(7), pages 1617-1636, October.
    10. Boysen, Nils & Scholl, Armin & Wopperer, Nico, 2012. "Resequencing of mixed-model assembly lines: Survey and research agenda," European Journal of Operational Research, Elsevier, vol. 216(3), pages 594-604.
    11. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2009. "Sequencing mixed-model assembly lines: Survey, classification and model critique," European Journal of Operational Research, Elsevier, vol. 192(2), pages 349-373, January.
    12. Ioanna Makarouni & John Psarras & Eleftherios Siskos, 2015. "Interactive bicriterion decision support for a large scale industrial scheduling system," Annals of Operations Research, Springer, vol. 227(1), pages 45-61, April.
    13. F. Tanhaie & M. Rabbani & N. Manavizadeh, 2020. "Applying available-to-promise (ATP) concept in mixed-model assembly line sequencing problems in a Make-To-Order (MTO) environment: problem extension, model formulation and Lagrangian relaxation algori," OPSEARCH, Springer;Operational Research Society of India, vol. 57(2), pages 320-346, June.
    14. Asieh Varyani & Mohsen Salehi & Meysam Heydari Gharahcheshmeh, 2024. "Optimizing Mixed-Model Synchronous Assembly Lines with Bipartite Sequence-Dependent Setup Times in Advanced Manufacturing," Energies, MDPI, vol. 17(12), pages 1-19, June.
    15. Sasan Khalifehzadeh & Mehdi Seifbarghy & Bahman Naderi, 2017. "Solving a fuzzy multi objective model of a production–distribution system using meta-heuristic based approaches," Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 95-109, January.
    16. H. Mosadegh & S.M.T. Fatemi Ghomi & G.A. Süer, 2017. "Heuristic approaches for mixed-model sequencing problem with stochastic processing times," International Journal of Production Research, Taylor & Francis Journals, vol. 55(10), pages 2857-2880, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2009. "Sequencing mixed-model assembly lines: Survey, classification and model critique," European Journal of Operational Research, Elsevier, vol. 192(2), pages 349-373, January.
    2. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2009. "The product rate variation problem and its relevance in real world mixed-model assembly lines," European Journal of Operational Research, Elsevier, vol. 197(2), pages 818-824, September.
    3. Ioanna Makarouni & John Psarras & Eleftherios Siskos, 2015. "Interactive bicriterion decision support for a large scale industrial scheduling system," Annals of Operations Research, Springer, vol. 227(1), pages 45-61, April.
    4. Drexl, Andreas & Kimms, Alf, 1999. "Belastungsorientierte Just-in-Time Variantenfließfertigung," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 502, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    5. Zhu, Jin & Ding, Fong-Yuen, 2000. "A transformed two-stage method for reducing the part-usage variation and a comparison of the product-level and part-level solutions in sequencing mixed-model assembly lines," European Journal of Operational Research, Elsevier, vol. 127(1), pages 203-216, November.
    6. Ding, Fong-Yuen & Zhu, Jin & Sun, Hui, 2006. "Comparing two weighted approaches for sequencing mixed-model assembly lines with multiple objectives," International Journal of Production Economics, Elsevier, vol. 102(1), pages 108-131, July.
    7. Andreas Drexl & Alf Kimms, 2001. "Sequencing JIT Mixed-Model Assembly Lines Under Station-Load and Part-Usage Constraints," Management Science, INFORMS, vol. 47(3), pages 480-491, March.
    8. Aigbedo, Henry, 2007. "An assessment of the effect of mass customization on suppliers' inventory levels in a JIT supply chain," European Journal of Operational Research, Elsevier, vol. 181(2), pages 704-715, September.
    9. N. Brauner & Y. Crama & A. Grigoriev & J. Klundert, 2005. "A Framework for the Complexity of High-Multiplicity Scheduling Problems," Journal of Combinatorial Optimization, Springer, vol. 9(3), pages 313-323, May.
    10. Drexl, Andreas & Jordan, Carsten, 1994. "Materialflußorientierte Produktionssteuerung bei Variantenfließfertigung," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 362, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    11. Boysen, Nils & Scholl, Armin & Wopperer, Nico, 2012. "Resequencing of mixed-model assembly lines: Survey and research agenda," European Journal of Operational Research, Elsevier, vol. 216(3), pages 594-604.
    12. Steiner, George & Yeomans, Julian Scott, 1996. "Optimal level schedules in mixed-model, multi-level JIT assembly systems with pegging," European Journal of Operational Research, Elsevier, vol. 95(1), pages 38-52, November.
    13. Drexl, Andreas & Kimms, Alf, 1997. "Sequencing JIT mixed-model assembly lines under station load- and part usage-constraints," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 460, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    14. Yavuz, Mesut & Tufekci, Suleyman, 2006. "A bounded dynamic programming solution to the batching problem in mixed-model just-in-time manufacturing systems," International Journal of Production Economics, Elsevier, vol. 103(2), pages 841-862, October.
    15. Bautista, Joaquin & Companys, Ramon & Corominas, Albert, 2000. "Note on cyclic sequences in the product rate variation problem," European Journal of Operational Research, Elsevier, vol. 124(3), pages 468-477, August.
    16. Matthießen, Lars & Drexl, Andreas & Kimms, Alf, 2000. "Constraint propagation algorithms for the car sequencing problem," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 531, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    17. Fliedner, Malte & Boysen, Nils, 2008. "Solving the car sequencing problem via Branch & Bound," European Journal of Operational Research, Elsevier, vol. 191(3), pages 1023-1042, December.
    18. Giard, Vincent & Jeunet, Jully, 2010. "Optimal sequencing of mixed models with sequence-dependent setups and utility workers on an assembly line," International Journal of Production Economics, Elsevier, vol. 123(2), pages 290-300, February.
    19. Bollapragada, Srinivas & Bussieck, Michael & Mallik, Suman, 2002. "Scheduling Commercial Videotapes in Broadcast Television," Working Papers 02-0127, University of Illinois at Urbana-Champaign, College of Business.
    20. Sourd, Francis, 2005. "Punctuality and idleness in just-in-time scheduling," European Journal of Operational Research, Elsevier, vol. 167(3), pages 739-751, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:167:y:2005:i:3:p:696-716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.