IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v158y2004i1p34-45.html
   My bibliography  Save this article

Incorporating kin selection in simulated annealing algorithm and its performance evaluation

Author

Listed:
  • Singh, Kumar Ashutosh
  • Mukherjee, Atreya
  • Tiwari, M. K.

Abstract

No abstract is available for this item.

Suggested Citation

  • Singh, Kumar Ashutosh & Mukherjee, Atreya & Tiwari, M. K., 2004. "Incorporating kin selection in simulated annealing algorithm and its performance evaluation," European Journal of Operational Research, Elsevier, vol. 158(1), pages 34-45, October.
  • Handle: RePEc:eee:ejores:v:158:y:2004:i:1:p:34-45
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(03)00251-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kimms, Alf, 1993. "Multi-level, single-machine lot sizing and scheduling: With initial inventory," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 329, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    2. Panayotis Afentakis & Bezalel Gavish, 1986. "Optimal Lot-Sizing Algorithms for Complex Product Structures," Operations Research, INFORMS, vol. 34(2), pages 237-249, April.
    3. Stadtler, Hartmut, 1994. "Mixed integer programming model formulations for dynamic multi-item multi-level capacitated lotsizing," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 2648, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drexl, Andreas & Haase, Knut, 1995. "Proportional lotsizing and scheduling," International Journal of Production Economics, Elsevier, vol. 40(1), pages 73-87, June.
    2. Sereshti, Narges & Adulyasak, Yossiri & Jans, Raf, 2024. "Managing flexibility in stochastic multi-level lot sizing problem with service level constraints," Omega, Elsevier, vol. 122(C).
    3. Xiao, Yiyong & Kaku, Ikou & Zhao, Qiuhong & Zhang, Renqian, 2011. "A reduced variable neighborhood search algorithm for uncapacitated multilevel lot-sizing problems," European Journal of Operational Research, Elsevier, vol. 214(2), pages 223-231, October.
    4. Gansterer, Margaretha & Födermayr, Patrick & Hartl, Richard F., 2021. "The capacitated multi-level lot-sizing problem with distributed agents," International Journal of Production Economics, Elsevier, vol. 235(C).
    5. Anantaram Balakrishnan & Joseph Geunes, 2000. "Requirements Planning with Substitutions: Exploiting Bill-of-Materials Flexibility in Production Planning," Manufacturing & Service Operations Management, INFORMS, vol. 2(2), pages 166-185, January.
    6. Erenguc, S. Selcuk & Simpson, N. C. & Vakharia, Asoo J., 1999. "Integrated production/distribution planning in supply chains: An invited review," European Journal of Operational Research, Elsevier, vol. 115(2), pages 219-236, June.
    7. Ertogral, Kadir, 2008. "Multi-item single source ordering problem with transportation cost: A Lagrangian decomposition approach," European Journal of Operational Research, Elsevier, vol. 191(1), pages 156-165, November.
    8. Kimms, Alf, 1996. "Improved lower bounds for the proportional lot sizing and scheduling problem," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 414, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    9. Haase, Knut & Kimms, Alf, 1996. "Lot sizing and scheduling with sequence dependent setup costs and times and efficient rescheduling opportunities," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 393, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    10. Jans, Raf & Degraeve, Zeger, 2007. "Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1855-1875, March.
    11. Nazrul Shaikh & Vittal Prabhu & Danilo Abril & David Sánchez & Jorge Arias & Esteban Rodríguez & Germán Riaño, 2011. "Kimberly-Clark Latin America Builds an Optimization-Based System for Machine Scheduling," Interfaces, INFORMS, vol. 41(5), pages 455-465, October.
    12. Drexl, Andreas & Haase, Knut, 1992. "A new type of model for multi-item capacitated dynamic lotsizing and scheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 286, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    13. Kimms, Alf & Drexl, Andreas, 1996. "Multi-level lot sizing: A literature survey," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 405, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    14. Merzifonluoglu, Yasemin & Geunes, Joseph, 2006. "Uncapacitated production and location planning models with demand fulfillment flexibility," International Journal of Production Economics, Elsevier, vol. 102(2), pages 199-216, August.
    15. A. Kimms, 1997. "Demand shuffle—A method for multilevel proportional lot sizing and scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(4), pages 319-340, June.
    16. N.C. Simpson & S. Selcuk Erenguc, 2005. "Modeling multiple stage manufacturing systems with generalized costs and capacity issues," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(6), pages 560-570, September.
    17. Francesco Gaglioppa & Lisa A. Miller & Saif Benjaafar, 2008. "Multitask and Multistage Production Planning and Scheduling for Process Industries," Operations Research, INFORMS, vol. 56(4), pages 1010-1025, August.
    18. Jörg Homberger, 2008. "A Parallel Genetic Algorithm for the Multilevel Unconstrained Lot-Sizing Problem," INFORMS Journal on Computing, INFORMS, vol. 20(1), pages 124-132, February.
    19. dos Santos-Meza, Elisangela & Oliveira dos Santos, Maristela & Nereu Arenales, Marcos, 2002. "A lot-sizing problem in an automated foundry," European Journal of Operational Research, Elsevier, vol. 139(3), pages 490-500, June.
    20. Dellaert, N. P. & Jeunet, J., 2003. "Randomized multi-level lot-sizing heuristics for general product structures," European Journal of Operational Research, Elsevier, vol. 148(1), pages 211-228, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:158:y:2004:i:1:p:34-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.