IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v155y2004i1p209-225.html
   My bibliography  Save this article

Repetitive tests as an economic alternative procedure to control attributes with diagnosis errors

Author

Listed:
  • Quinino, R. C.
  • Lee Ho, L.

Abstract

No abstract is available for this item.

Suggested Citation

  • Quinino, R. C. & Lee Ho, L., 2004. "Repetitive tests as an economic alternative procedure to control attributes with diagnosis errors," European Journal of Operational Research, Elsevier, vol. 155(1), pages 209-225, May.
  • Handle: RePEc:eee:ejores:v:155:y:2004:i:1:p:209-225
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(02)00857-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anil Gaba & Robert L. Winkler, 1992. "Implications of Errors in Survey Data: A Bayesian Model," Management Science, INFORMS, vol. 38(7), pages 913-925, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chun, Young H., 2016. "Designing repetitive screening procedures with imperfect inspections: An empirical Bayes approach," European Journal of Operational Research, Elsevier, vol. 253(3), pages 639-647.
    2. Costa Quinino, Roberto da & Colin, Emerson C. & Ho, Linda Lee, 2010. "Diagnostic errors and repetitive sequential classifications in on-line process control by attributes," European Journal of Operational Research, Elsevier, vol. 201(1), pages 231-238, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Kandari Noriah M. & Lahiri Partha, 2016. "Prediction of a Function of Misclassified Binary Data," Statistics in Transition New Series, Statistics Poland, vol. 17(3), pages 429-447, September.
    2. Martijn van Hasselt & Christopher R. Bollinger & Jeremy W. Bray, 2022. "A Bayesian approach to account for misclassification in prevalence and trend estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 351-367, March.
    3. Noriah M. Al-Kandari & Partha Lahiri, 2016. "Prediction Of A Function Of Misclassified Binary Data," Statistics in Transition New Series, Polish Statistical Association, vol. 17(3), pages 429-447, September.
    4. Rahardja, Dewi & Young, Dean M., 2010. "Credible sets for risk ratios in over-reported two-sample binomial data using the double-sampling scheme," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1281-1287, May.
    5. T. Pham-Gia & N. Turkhan, 2005. "Bayesian decision criteria in the presence of noises under quadratic and absolute value loss functions," Statistical Papers, Springer, vol. 46(2), pages 247-266, April.
    6. Rahardja, Dewi & Young, Dean M., 2011. "Likelihood-based confidence intervals for the risk ratio using double sampling with over-reported binary data," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 813-823, January.
    7. Anil Gaba & W. Kip Viscusi, 1998. "Differences in Subjective Risk Thresholds: Worker Groups as an Example," Management Science, INFORMS, vol. 44(6), pages 801-811, June.
    8. M. Ruiz & F. J. Giron & C. J. Perez & J. Martin & C. Rojano, 2008. "A Bayesian model for multinomial sampling with misclassified data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(4), pages 369-382.
    9. Klein, Barbara D., 2001. "Detecting errors in data: clarification of the impact of base rate expectations and incentives," Omega, Elsevier, vol. 29(5), pages 391-404, October.
    10. Ashley Ling & El Hamidi Hay & Samuel E Aggrey & Romdhane Rekaya, 2018. "A Bayesian approach for analysis of ordered categorical responses subject to misclassification," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-17, December.
    11. Bollinger, Christopher R. & van Hasselt, Martijn, 2017. "A Bayesian analysis of binary misclassification," Economics Letters, Elsevier, vol. 156(C), pages 68-73.
    12. Boese, Doyle H. & Young, Dean M. & Stamey, James D., 2006. "Confidence intervals for a binomial parameter based on binary data subject to false-positive misclassification," Computational Statistics & Data Analysis, Elsevier, vol. 50(12), pages 3369-3385, August.
    13. Partha Lahiri & Noriah M. Al-Kandari, 2016. "Prediction of a Function of Misclassified Binary Data," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 17(3), pages 429-447, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:155:y:2004:i:1:p:209-225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.