IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v107y1998i2p389-400.html
   My bibliography  Save this article

Branch and bound crossed with GA to solve hybrid flowshops

Author

Listed:
  • Portmann, M. -C.
  • Vignier, A.
  • Dardilhac, D.
  • Dezalay, D.

Abstract

No abstract is available for this item.

Suggested Citation

  • Portmann, M. -C. & Vignier, A. & Dardilhac, D. & Dezalay, D., 1998. "Branch and bound crossed with GA to solve hybrid flowshops," European Journal of Operational Research, Elsevier, vol. 107(2), pages 389-400, June.
  • Handle: RePEc:eee:ejores:v:107:y:1998:i:2:p:389-400
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(97)00333-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. J. Paul, 1979. "A Production Scheduling Problem in the Glass-Container Industry," Operations Research, INFORMS, vol. 27(2), pages 290-302, April.
    2. Fortemps, Ph. & Ost, Ch. & Pirlot, M. & Teghem, J. & Tuyttens, D., 1996. "Using metaheuristics for solving a production scheduling problem in a chemical firm. A case study," International Journal of Production Economics, Elsevier, vol. 46(1), pages 13-26, December.
    3. Brah, Shaukat A. & Hunsucker, John L., 1991. "Branch and bound algorithm for the flow shop with multiple processors," European Journal of Operational Research, Elsevier, vol. 51(1), pages 88-99, March.
    4. Rajendran, Chandrasekharan & Chaudhuri, Dipak, 1992. "Scheduling in n-job, m-stage flowshop with parallel processors to minimize makespan," International Journal of Production Economics, Elsevier, vol. 27(2), pages 137-143, May.
    5. Rahendran, Chandrasekharan & Chaudhuri, Dipak, 1992. "A multi-stage parallel-processor flowshop problem with minimum flowtime," European Journal of Operational Research, Elsevier, vol. 57(1), pages 111-122, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kis, Tamas & Pesch, Erwin, 2005. "A review of exact solution methods for the non-preemptive multiprocessor flowshop problem," European Journal of Operational Research, Elsevier, vol. 164(3), pages 592-608, August.
    2. F Sivrikaya şerifoğlu & G Ulusoy, 2004. "Multiprocessor task scheduling in multistage hybrid flow-shops: a genetic algorithm approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(5), pages 504-512, May.
    3. Quadt, Daniel & Kuhn, Heinrich, 2007. "A taxonomy of flexible flow line scheduling procedures," European Journal of Operational Research, Elsevier, vol. 178(3), pages 686-698, May.
    4. Jourdan, L. & Basseur, M. & Talbi, E.-G., 2009. "Hybridizing exact methods and metaheuristics: A taxonomy," European Journal of Operational Research, Elsevier, vol. 199(3), pages 620-629, December.
    5. Ruiz, Ruben & Maroto, Concepcion, 2006. "A genetic algorithm for hybrid flowshops with sequence dependent setup times and machine eligibility," European Journal of Operational Research, Elsevier, vol. 169(3), pages 781-800, March.
    6. Néron, Emmanuel & Baptiste, Philippe & Gupta, Jatinder N. D., 2001. "Solving hybrid flow shop problem using energetic reasoning and global operations," Omega, Elsevier, vol. 29(6), pages 501-511, December.
    7. Carlos Paternina-Arboleda & Jairo Montoya-Torres & Milton Acero-Dominguez & Maria Herrera-Hernandez, 2008. "Scheduling jobs on a k-stage flexible flow-shop," Annals of Operations Research, Springer, vol. 164(1), pages 29-40, November.
    8. Quang Chieu Ta & Jean-Charles Billaut & Jean-Louis Bouquard, 2018. "Matheuristic algorithms for minimizing total tardiness in the m-machine flow-shop scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 617-628, March.
    9. Ruiz, Rubén & Vázquez-Rodríguez, José Antonio, 2010. "The hybrid flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 205(1), pages 1-18, August.
    10. Niu, Qun & Zhou, Taijin & Fei, Minrui & Wang, Bing, 2012. "An efficient quantum immune algorithm to minimize mean flow time for hybrid flow shop problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 84(C), pages 1-25.
    11. Mohamed Haouari & Lotfi Hidri & Anis Gharbi, 2006. "Optimal Scheduling of a Two-stage Hybrid Flow Shop," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(1), pages 107-124, August.
    12. Quadt, Daniel & Kuhn, Heinrich, 2007. "Batch scheduling of jobs with identical process times on flexible flow lines," International Journal of Production Economics, Elsevier, vol. 105(2), pages 385-401, February.
    13. Lee, Sang M. & Asllani, Arben A., 2004. "Job scheduling with dual criteria and sequence-dependent setups: mathematical versus genetic programming," Omega, Elsevier, vol. 32(2), pages 145-153, April.
    14. K-C Ying, 2009. "An iterated greedy heuristic for multistage hybrid flowshop scheduling problems with multiprocessor tasks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(6), pages 810-817, June.
    15. Chou, Fuh-Der, 2013. "Particle swarm optimization with cocktail decoding method for hybrid flow shop scheduling problems with multiprocessor tasks," International Journal of Production Economics, Elsevier, vol. 141(1), pages 137-145.
    16. Ann Vandevelde & Han Hoogeveen & Cor Hurkens & Jan Karel Lenstra, 2005. "Lower Bounds for the Head-Body-Tail Problem on Parallel Machines: A Computational Study of the Multiprocessor Flow Shop," INFORMS Journal on Computing, INFORMS, vol. 17(3), pages 305-320, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruiz, Rubén & Vázquez-Rodríguez, José Antonio, 2010. "The hybrid flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 205(1), pages 1-18, August.
    2. Quadt, Daniel & Kuhn, Heinrich, 2007. "A taxonomy of flexible flow line scheduling procedures," European Journal of Operational Research, Elsevier, vol. 178(3), pages 686-698, May.
    3. Brah, Shaukat A. & Loo, Luan Luan, 1999. "Heuristics for scheduling in a flow shop with multiple processors," European Journal of Operational Research, Elsevier, vol. 113(1), pages 113-122, February.
    4. Kim, J-S. & Kang, S-H. & Lee, S. M., 1997. "Transfer batch scheduling for a two-stage flowshop with identical parallel machines at each stage," Omega, Elsevier, vol. 25(5), pages 547-555, October.
    5. Kurz, Mary E. & Askin, Ronald G., 2003. "Comparing scheduling rules for flexible flow lines," International Journal of Production Economics, Elsevier, vol. 85(3), pages 371-388, September.
    6. Kurz, Mary E. & Askin, Ronald G., 2004. "Scheduling flexible flow lines with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 159(1), pages 66-82, November.
    7. Ruiz, Ruben & Maroto, Concepcion, 2006. "A genetic algorithm for hybrid flowshops with sequence dependent setup times and machine eligibility," European Journal of Operational Research, Elsevier, vol. 169(3), pages 781-800, March.
    8. Djellab, Housni & Djellab, Khaled, 2002. "Preemptive Hybrid Flowshop Scheduling problem of interval orders," European Journal of Operational Research, Elsevier, vol. 137(1), pages 37-49, February.
    9. Mohamed Haouari & Lotfi Hidri & Anis Gharbi, 2006. "Optimal Scheduling of a Two-stage Hybrid Flow Shop," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(1), pages 107-124, August.
    10. Suresh, V., 1997. "A note on scheduling of two-stage flow shop with multiple processors," International Journal of Production Economics, Elsevier, vol. 49(1), pages 77-82, March.
    11. Quadt, Daniel & Kuhn, Heinrich, 2007. "Batch scheduling of jobs with identical process times on flexible flow lines," International Journal of Production Economics, Elsevier, vol. 105(2), pages 385-401, February.
    12. Jin, Zhihong & Yang, Zan & Ito, Takahiro, 2006. "Metaheuristic algorithms for the multistage hybrid flowshop scheduling problem," International Journal of Production Economics, Elsevier, vol. 100(2), pages 322-334, April.
    13. Kis, Tamas & Pesch, Erwin, 2005. "A review of exact solution methods for the non-preemptive multiprocessor flowshop problem," European Journal of Operational Research, Elsevier, vol. 164(3), pages 592-608, August.
    14. Allahverdi, Ali & Soroush, H.M., 2008. "The significance of reducing setup times/setup costs," European Journal of Operational Research, Elsevier, vol. 187(3), pages 978-984, June.
    15. Néron, Emmanuel & Baptiste, Philippe & Gupta, Jatinder N. D., 2001. "Solving hybrid flow shop problem using energetic reasoning and global operations," Omega, Elsevier, vol. 29(6), pages 501-511, December.
    16. Nait Tahar, Djamel & Yalaoui, Farouk & Chu, Chengbin & Amodeo, Lionel, 2006. "A linear programming approach for identical parallel machine scheduling with job splitting and sequence-dependent setup times," International Journal of Production Economics, Elsevier, vol. 99(1-2), pages 63-73, February.
    17. Lin, Hung-Tso & Liao, Ching-Jong, 2003. "A case study in a two-stage hybrid flow shop with setup time and dedicated machines," International Journal of Production Economics, Elsevier, vol. 86(2), pages 133-143, November.
    18. Hoogeveen, J. A. & Lenstra, J. K. & Veltman, B., 1996. "Preemptive scheduling in a two-stage multiprocessor flow shop is NP-hard," European Journal of Operational Research, Elsevier, vol. 89(1), pages 172-175, February.
    19. Pan, Quan-Ke & Gao, Liang & Li, Xin-Yu & Gao, Kai-Zhou, 2017. "Effective metaheuristics for scheduling a hybrid flowshop with sequence-dependent setup times," Applied Mathematics and Computation, Elsevier, vol. 303(C), pages 89-112.
    20. Santos, D. L. & Hunsucker, J. L. & Deal, D. E., 1995. "Global lower bounds for flow shops with multiple processors," European Journal of Operational Research, Elsevier, vol. 80(1), pages 112-120, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:107:y:1998:i:2:p:389-400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.