IDEAS home Printed from https://ideas.repec.org/a/eee/eejocm/v52y2024ics1755534524000381.html
   My bibliography  Save this article

A practical method to draw from multivariate extreme value distributions

Author

Listed:
  • Wang, Ke
  • Ye, Xin

Abstract

Generating random draws from multivariate extreme value (MEV) distributions plays an important role in the microsimulation of travel behaviors, which can effectively avoid heavy computational burdens from simulation based on calculated probability values, particularly in simulations for a large population or choice behaviors from a large choice set. However, there are few practical and effective methods for drawing from MEV distributions. This paper proposes a simple and computationally efficient approach for drawing from MEV distributions in the nested logit (NL), cross-nested logit (CNL), and paired combinatorial logit (PCL) models. The proposed approach to draw from the MEV distribution for a CNL model provides a new perspective to understand the underlying choice mechanism of the CNL model. To our knowledge, this is the first study to draw from an MEV distribution in the PCL model. Random draws from the proposed approach approximately follow the standard Gumbel distribution, which is the marginal distribution of NL/CNL/PCL models, and approximate correlations among alternatives well. Simulation results of NL/CNL/PCL models show that the proposed approach provides high-level accuracy in recovering model parameters with the overall mean absolute percentage bias being less than 3%. The proposed approach is computationally more efficient than similar ones because it only needs to draw from Gumbel distributions. The proposed approach can be used to simulate NL/CNL/PCL models with a large choice set or a multiple discrete-continuous generalized extreme value model in various application settings such as joint destination-mode choices, time use allocations, etc.

Suggested Citation

  • Wang, Ke & Ye, Xin, 2024. "A practical method to draw from multivariate extreme value distributions," Journal of choice modelling, Elsevier, vol. 52(C).
  • Handle: RePEc:eee:eejocm:v:52:y:2024:i:c:s1755534524000381
    DOI: 10.1016/j.jocm.2024.100506
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1755534524000381
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jocm.2024.100506?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bhat, Chandra R. & Sen, Sudeshna, 2006. "Household vehicle type holdings and usage: an application of the multiple discrete-continuous extreme value (MDCEV) model," Transportation Research Part B: Methodological, Elsevier, vol. 40(1), pages 35-53, January.
    2. Pinjari, Abdul Rawoof & Bhat, Chandra, 2021. "Computationally efficient forecasting procedures for Kuhn-Tucker consumer demand model systems: Application to residential energy consumption analysis," Journal of choice modelling, Elsevier, vol. 39(C).
    3. Pinjari, Abdul Rawoof & Bhat, Chandra, 2010. "A multiple discrete-continuous nested extreme value (MDCNEV) model: Formulation and application to non-worker activity time-use and timing behavior on weekdays," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 562-583, May.
    4. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, November.
    5. Cardell, N. Scott, 1997. "Variance Components Structures for the Extreme-Value and Logistic Distributions with Application to Models of Heterogeneity," Econometric Theory, Cambridge University Press, vol. 13(2), pages 185-213, April.
    6. Pinjari, Abdul Rawoof, 2011. "Generalized extreme value (GEV)-based error structures for multiple discrete-continuous choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 474-489, March.
    7. Wen, Chieh-Hua & Koppelman, Frank S., 2001. "The generalized nested logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 627-641, August.
    8. Bhat, Chandra R., 2018. "A new flexible multiple discrete–continuous extreme value (MDCEV) choice model," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 261-279.
    9. Jian, Sisi & Rashidi, Taha Hossein & Dixit, Vinayak, 2017. "An analysis of carsharing vehicle choice and utilization patterns using multiple discrete-continuous extreme value (MDCEV) models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 362-376.
    10. Koppelman, Frank S. & Wen, Chieh-Hua, 2000. "The paired combinatorial logit model: properties, estimation and application," Transportation Research Part B: Methodological, Elsevier, vol. 34(2), pages 75-89, February.
    11. Bunch, David S. & Rocke, David M., 2016. "Variance-component-based nested logit specifications: Improved formulation, and practical microsimulation of random disturbance terms," Journal of choice modelling, Elsevier, vol. 21(C), pages 30-35.
    12. Astroza, Sebastian & Bhat, Aarti C., 2016. "On allowing a general form for unobserved heterogeneity in the multiple discrete–continuous probit model: Formulation and application to tourism travelAuthor-Name: Bhat, Chandra R," Transportation Research Part B: Methodological, Elsevier, vol. 86(C), pages 223-249.
    13. Bhat, Chandra R., 2008. "The multiple discrete-continuous extreme value (MDCEV) model: Role of utility function parameters, identification considerations, and model extensions," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 274-303, March.
    14. Bhat, Chandra R., 2005. "A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 679-707, September.
    15. Laurie Garrow & Tudor Bodea & Misuk Lee, 2010. "Generation of synthetic datasets for discrete choice analysis," Transportation, Springer, vol. 37(2), pages 183-202, March.
    16. Bhat, Chandra R., 2018. "New matrix-based methods for the analytic evaluation of the multivariate cumulative normal distribution function," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 238-256.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhat, Chandra R. & Mondal, Aupal & Asmussen, Katherine E. & Bhat, Aarti C., 2020. "A multiple discrete extreme value choice model with grouped consumption data and unobserved budgets," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 196-222.
    2. Saxena, Shobhit & Pinjari, Abdul Rawoof & Paleti, Rajesh, 2022. "A multiple discrete-continuous extreme value model with ordered preferences (MDCEV-OP): Modelling framework for episode-level activity participation and time-use analysis," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 259-283.
    3. Rodrigo J. Tapia & Gerard Jong & Ana M. Larranaga & Helena B. Bettella Cybis, 2021. "Exploring Multiple‐discreteness in Freight Transport. A Multiple Discrete Extreme Value Model Application for Grain Consolidators in Argentina," Networks and Spatial Economics, Springer, vol. 21(3), pages 581-608, September.
    4. Tapia, Rodrigo J. & de Jong, Gerard & Larranaga, Ana M. & Bettella Cybis, Helena B., 2020. "Application of MDCEV to infrastructure planning in regional freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 255-271.
    5. Palma, David & Hess, Stephane, 2022. "Extending the Multiple Discrete Continuous (MDC) modelling framework to consider complementarity, substitution, and an unobserved budget," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 13-35.
    6. Bhat, Chandra R., 2018. "A new flexible multiple discrete–continuous extreme value (MDCEV) choice model," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 261-279.
    7. Sikder, Sujan & Pinjari, Abdul Rawoof, 2013. "The benefits of allowing heteroscedastic stochastic distributions in multiple discrete-continuous choice models," Journal of choice modelling, Elsevier, vol. 9(C), pages 39-56.
    8. Chandra R. Bhat & Subodh K. Dubey & Mohammad Jobair Bin Alam & Waleed H. Khushefati, 2015. "A New Spatial Multiple Discrete-Continuous Modeling Approach To Land Use Change Analysis," Journal of Regional Science, Wiley Blackwell, vol. 55(5), pages 801-841, November.
    9. Calastri, Chiara & Giergiczny, Marek & Zedrosser, Andreas & Hess, Stephane, 2023. "Modelling activity patterns of wild animals - An application of the multiple discrete-continuous extreme value (MDCEV) model," Journal of choice modelling, Elsevier, vol. 47(C).
    10. Wu, Guoqiang & Hong, Jinhyun, 2022. "An analysis of the role of residential location on the relationships between time spent online and non-mandatory activity-travel time use over time," Journal of Transport Geography, Elsevier, vol. 102(C).
    11. Jian, Sisi & Rashidi, Taha Hossein & Dixit, Vinayak, 2017. "An analysis of carsharing vehicle choice and utilization patterns using multiple discrete-continuous extreme value (MDCEV) models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 362-376.
    12. Pudāne, Baiba & van Cranenburgh, Sander & Chorus, Caspar G., 2021. "A day in the life with an automated vehicle: Empirical analysis of data from an interactive stated activity-travel survey," Journal of choice modelling, Elsevier, vol. 39(C).
    13. Saxena, Shobhit & Pinjari, Abdul Rawoof & Roy, Ananya & Paleti, Rajesh, 2021. "Multiple discrete-continuous choice models with bounds on consumptions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 237-265.
    14. Pinjari, Abdul Rawoof, 2011. "Generalized extreme value (GEV)-based error structures for multiple discrete-continuous choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 474-489, March.
    15. Bhat, Chandra R., 2022. "A new closed-form two-stage budgeting-based multiple discrete-continuous model," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 162-192.
    16. Pellegrini, Andrea & Pinjari, Abdul Rawoof & Maggi, Rico, 2021. "A multiple discrete continuous model of time use that accommodates non-additively separable utility functions along with time and monetary budget constraints," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 37-53.
    17. Ye, Xin & Garikapati, Venu M. & You, Daehyun & Pendyala, Ram M., 2017. "A practical method to test the validity of the standard Gumbel distribution in logit-based multinomial choice models of travel behavior," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 173-192.
    18. Ozonder, Gozde & Miller, Eric J., 2021. "Longitudinal investigation of skeletal activity episode timing decisions – A copula approach," Journal of choice modelling, Elsevier, vol. 40(C).
    19. Woo, JongRoul & Choi, Jae Young & Shin, Jungwoo & Lee, Jongsu, 2014. "The effect of new media on consumer media usage: An empirical study in South Korea," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 3-11.
    20. Pinjari, Abdul Rawoof & Bhat, Chandra, 2021. "Computationally efficient forecasting procedures for Kuhn-Tucker consumer demand model systems: Application to residential energy consumption analysis," Journal of choice modelling, Elsevier, vol. 39(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eejocm:v:52:y:2024:i:c:s1755534524000381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-choice-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.