IDEAS home Printed from https://ideas.repec.org/a/eee/eejocm/v29y2018icp152-168.html
   My bibliography  Save this article

Discriminative conditional restricted Boltzmann machine for discrete choice and latent variable modelling

Author

Listed:
  • Wong, Melvin
  • Farooq, Bilal
  • Bilodeau, Guillaume-Alexandre

Abstract

Conventional methods of estimating latent behaviour generally use attitudinal questions which are subjective and these survey questions may not always be available. We hypothesize that an alternative approach such as non-parametric artificial neural networks can be used for latent variable estimation through an undirected graphical models. In this study, we explore the use of generative non-parametric modelling methods to estimate latent variables from prior choice distribution without the conventional use of measurement indicators. A restricted Boltzmann machine is used to represent latent behaviour factors by analyzing the relationship information between the observed choices and explanatory variables. The algorithm is adapted for latent behaviour analysis in discrete choice scenario and we use a graphical approach to evaluate and understand the semantic meaning from estimated parameter vector values. We illustrate our methodology on a financial instrument choice dataset and perform statistical analysis on parameter sensitivity and stability. Our findings show that through non-parametric statistical tests, we can extract useful latent information on the behaviour of latent constructs through machine learning methods and present strong and significant influence on the choice process. Furthermore, our modelling framework shows robustness in input variability through sampling and validation.

Suggested Citation

  • Wong, Melvin & Farooq, Bilal & Bilodeau, Guillaume-Alexandre, 2018. "Discriminative conditional restricted Boltzmann machine for discrete choice and latent variable modelling," Journal of choice modelling, Elsevier, vol. 29(C), pages 152-168.
  • Handle: RePEc:eee:eejocm:v:29:y:2018:i:c:p:152-168
    DOI: 10.1016/j.jocm.2017.11.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1755534517300970
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jocm.2017.11.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nesreen Ahmed & Amir Atiya & Neamat El Gayar & Hisham El-Shishiny, 2010. "An Empirical Comparison of Machine Learning Models for Time Series Forecasting," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 594-621.
    2. Vij, Akshay & Walker, Joan L., 2016. "How, when and why integrated choice and latent variable models are latently useful," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 192-217.
    3. David Hensher & William Greene, 2003. "The Mixed Logit model: The state of practice," Transportation, Springer, vol. 30(2), pages 133-176, May.
    4. Chorus, Caspar G. & Kroesen, Maarten, 2014. "On the (im-)possibility of deriving transport policy implications from hybrid choice models," Transport Policy, Elsevier, vol. 36(C), pages 217-222.
    5. Kim, Jinhee & Rasouli, Soora & Timmermans, Harry, 2014. "Expanding scope of hybrid choice models allowing for mixture of social influences and latent attitudes: Application to intended purchase of electric cars," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 71-85.
    6. Aurélie Glerum & Lidija Stankovikj & Michaël Thémans & Michel Bierlaire, 2014. "Forecasting the Demand for Electric Vehicles: Accounting for Attitudes and Perceptions," Transportation Science, INFORMS, vol. 48(4), pages 483-499, November.
    7. Rafael Maldonado-Hinarejos & Aruna Sivakumar & John Polak, 2014. "Exploring the role of individual attitudes and perceptions in predicting the demand for cycling: a hybrid choice modelling approach," Transportation, Springer, vol. 41(6), pages 1287-1304, November.
    8. Ben-Akiva, Moshe & McFadden, Daniel & Train, Kenneth & Börsch-Supan, Axel, 2002. "Hybrid Choice Models: Progress and Challenges," Sonderforschungsbereich 504 Publications 02-29, Sonderforschungsbereich 504, Universität Mannheim;Sonderforschungsbereich 504, University of Mannheim.
    9. Edward Morey & Jennifer Thacher & William Breffle, 2006. "Using Angler Characteristics and Attitudinal Data to Identify Environmental Preference Classes: A Latent-Class Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 34(1), pages 91-115, May.
    10. Bhat, Chandra R. & Dubey, Subodh K., 2014. "A new estimation approach to integrate latent psychological constructs in choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 68-85.
    11. Rungie, Cam M. & Coote, Leonard V. & Louviere, Jordan J., 2012. "Latent variables in discrete choice experiments," Journal of choice modelling, Elsevier, vol. 5(3), pages 145-156.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Melvin Wong & Bilal Farooq, 2019. "Information processing constraints in travel behaviour modelling: A generative learning approach," Papers 1907.07036, arXiv.org, revised Jul 2019.
    2. Smeele, Nicholas V.R. & Chorus, Caspar G. & Schermer, Maartje H.N. & de Bekker-Grob, Esther W., 2023. "Towards machine learning for moral choice analysis in health economics: A literature review and research agenda," Social Science & Medicine, Elsevier, vol. 326(C).
    3. Georges Sfeir & Filipe Rodrigues & Maya Abou-Zeid, 2021. "Gaussian Process Latent Class Choice Models," Papers 2101.12252, arXiv.org.
    4. Lahoz, Lorena Torres & Pereira, Francisco Camara & Sfeir, Georges & Arkoudi, Ioanna & Monteiro, Mayara Moraes & Azevedo, Carlos Lima, 2023. "Attitudes and Latent Class Choice Models using Machine Learning," Journal of choice modelling, Elsevier, vol. 49(C).
    5. Melvin Wong & Bilal Farooq, 2019. "ResLogit: A residual neural network logit model for data-driven choice modelling," Papers 1912.10058, arXiv.org, revised Feb 2021.
    6. Wang, Shunchao & Song, Zhanguo, 2024. "Exploring the behavioral stage transition of traveler's adoption of carsharing: An integrated choice and latent variable model," Journal of choice modelling, Elsevier, vol. 51(C).
    7. Lorena Torres Lahoz & Francisco Camara Pereira & Georges Sfeir & Ioanna Arkoudi & Mayara Moraes Monteiro & Carlos Lima Azevedo, 2023. "Attitudes and Latent Class Choice Models using Machine learning," Papers 2302.09871, arXiv.org.
    8. Sifringer, Brian & Lurkin, Virginie & Alahi, Alexandre, 2020. "Enhancing discrete choice models with representation learning," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 236-261.
    9. Han, Yafei & Pereira, Francisco Camara & Ben-Akiva, Moshe & Zegras, Christopher, 2022. "A neural-embedded discrete choice model: Learning taste representation with strengthened interpretability," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 166-186.
    10. Sfeir, Georges & Abou-Zeid, Maya & Rodrigues, Filipe & Pereira, Francisco Camara & Kaysi, Isam, 2021. "Latent class choice model with a flexible class membership component: A mixture model approach," Journal of choice modelling, Elsevier, vol. 41(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weibo Li & Maria Kamargianni, 2020. "An Integrated Choice and Latent Variable Model to Explore the Influence of Attitudinal and Perceptual Factors on Shared Mobility Choices and Their Value of Time Estimation," Transportation Science, INFORMS, vol. 54(1), pages 62-83, January.
    2. Iogansen, Xiatian & Wang, Kailai & Bunch, David & Matson, Grant & Circella, Giovanni, 2023. "Deciphering the factors associated with adoption of alternative fuel vehicles in California: An investigation of latent attitudes, socio-demographics, and neighborhood effects," Transportation Research Part A: Policy and Practice, Elsevier, vol. 168(C).
    3. Bouscasse, H., 2018. "Integrated choice and latent variable models: A literature review on mode choice," Working Papers 2018-07, Grenoble Applied Economics Laboratory (GAEL).
    4. Bansal, Prateek & Kumar, Rajeev Ranjan & Raj, Alok & Dubey, Subodh & Graham, Daniel J., 2021. "Willingness to pay and attitudinal preferences of Indian consumers for electric vehicles," Energy Economics, Elsevier, vol. 100(C).
    5. Hess, Stephane & Spitz, Greg & Bradley, Mark & Coogan, Matt, 2018. "Analysis of mode choice for intercity travel: Application of a hybrid choice model to two distinct US corridors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 547-567.
    6. Faccioli, Michela & Czajkowski, Mikołaj & Glenk, Klaus & Martin-Ortega, Julia, 2020. "Environmental attitudes and place identity as determinants of preferences for ecosystem services," Ecological Economics, Elsevier, vol. 174(C).
    7. Hélène Bouscasse, 2018. "Integrated choice and latent variable models: A literature review on mode choice," Working Papers hal-01795630, HAL.
    8. Schmid, Basil & Axhausen, Kay W., 2019. "In-store or online shopping of search and experience goods: A hybrid choice approach," Journal of choice modelling, Elsevier, vol. 31(C), pages 156-180.
    9. Enam, Annesha & Konduri, Karthik C. & Pinjari, Abdul R. & Eluru, Naveen, 2018. "An integrated choice and latent variable model for multiple discrete continuous choice kernels: Application exploring the association between day level moods and discretionary activity engagement choi," Journal of choice modelling, Elsevier, vol. 26(C), pages 80-100.
    10. Jose J. Soto & Victor Cantillo & Julian Arellana, 2018. "Incentivizing alternative fuel vehicles: the influence of transport policies, attitudes and perceptions," Transportation, Springer, vol. 45(6), pages 1721-1753, November.
    11. Vij, Akshay & Walker, Joan L., 2016. "How, when and why integrated choice and latent variable models are latently useful," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 192-217.
    12. Bernadeta Gołębiowska & Anna Bartczak & Mikołaj Czajkowski, 2020. "Energy Demand Management and Social Norms," Energies, MDPI, vol. 13(15), pages 1-20, July.
    13. Gustavo García-Melero & Rubén Sainz-González & Pablo Coto-Millán & Alejandra Valencia-Vásquez, 2021. "Sustainable Mobility Policy Analysis Using Hybrid Choice Models: Is It the Right Choice?," Sustainability, MDPI, vol. 13(5), pages 1-16, March.
    14. Daziano, Ricardo A., 2015. "Inference on mode preferences, vehicle purchases, and the energy paradox using a Bayesian structural choice model," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 1-26.
    15. Malte Welling & Ewa Zawojska & Julian Sagebiel, 2022. "Information, Consequentiality and Credibility in Stated Preference Surveys: A Choice Experiment on Climate Adaptation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 82(1), pages 257-283, May.
    16. Milad Mehdizadeh & Alireza Ermagun, 2020. "“I’ll never stop driving my child to school”: on multimodal and monomodal car users," Transportation, Springer, vol. 47(3), pages 1071-1102, June.
    17. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    18. Schmid, Basil & Becker, Felix & Axhausen, Kay W. & Widmer, Paul & Stein, Petra, 2023. "A simultaneous model of residential location, mobility tool ownership and mode choice using latent variables," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    19. Czajkowski, Mikołaj & Vossler, Christian A. & Budziński, Wiktor & Wiśniewska, Aleksandra & Zawojska, Ewa, 2017. "Addressing empirical challenges related to the incentive compatibility of stated preferences methods," Journal of Economic Behavior & Organization, Elsevier, vol. 142(C), pages 47-63.
    20. Fanchao Liao & Eric Molin & Bert van Wee, 2017. "Consumer preferences for electric vehicles: a literature review," Transport Reviews, Taylor & Francis Journals, vol. 37(3), pages 252-275, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eejocm:v:29:y:2018:i:c:p:152-168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-choice-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.