IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v24y2022icp151-163.html
   My bibliography  Save this article

A semi-parametric empirical likelihood approach for conditional estimating equations under endogenous selection

Author

Listed:
  • Berger, Yves G.
  • Patilea, Valentin

Abstract

The estimation and inference for conditional estimating equations models with endogenous selection, are considered. The approach takes into account possible endogenous selection which may lead to a selection bias. It can be used for a wide range of statistical models not covered by the model-based sampling theory. Endogeneity can be either part of the selection or within the covariates. It is particularly well suited for models with unknown heteroscedasticity, uncontrolled confounders and measurement errors. It will not be necessary to model the relationship between the endogenous covariates and the instrumental variables, which offers major advantages over two-stage least-squares. The approach proposed has the advantage of being based on a fixed number of constraints determined by the size of the parameter.

Suggested Citation

  • Berger, Yves G. & Patilea, Valentin, 2022. "A semi-parametric empirical likelihood approach for conditional estimating equations under endogenous selection," Econometrics and Statistics, Elsevier, vol. 24(C), pages 151-163.
  • Handle: RePEc:eee:ecosta:v:24:y:2022:i:c:p:151-163
    DOI: 10.1016/j.ecosta.2021.12.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2452306221001489
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2021.12.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Xiaohong & Pouzo, Demian, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.
    2. Manuel A. Domínguez & Ignacio N. Lobato, 2004. "Consistent Estimation of Models Defined by Conditional Moment Restrictions," Econometrica, Econometric Society, vol. 72(5), pages 1601-1615, September.
    3. Xiaohong Chen & Demian Pouzo, 2012. "Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals," Econometrica, Econometric Society, vol. 80(1), pages 277-321, January.
    4. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    5. Chamberlain, Gary, 1987. "Asymptotic efficiency in estimation with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 34(3), pages 305-334, March.
    6. Yves G. Berger, 2020. "An empirical likelihood approach under cluster sampling with missing observations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 91-121, February.
    7. Yuichi Kitamura & Gautam Tripathi & Hyungtaik Ahn, 2004. "Empirical Likelihood-Based Inference in Conditional Moment Restriction Models," Econometrica, Econometric Society, vol. 72(6), pages 1667-1714, November.
    8. Song Chen & Ingrid Van Keilegom, 2009. "A review on empirical likelihood methods for regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(3), pages 415-447, November.
    9. Sanjay Chaudhuri & Mark S. Handcock & Michael S. Rendall, 2008. "Generalized linear models incorporating population level information: an empirical‐likelihood‐based approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 311-328, April.
    10. Smith, Richard J., 2007. "Efficient information theoretic inference for conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 138(2), pages 430-460, June.
    11. Donald, Stephen G. & Imbens, Guido W. & Newey, Whitney K., 2009. "Choosing instrumental variables in conditional moment restriction models," Journal of Econometrics, Elsevier, vol. 152(1), pages 28-36, September.
    12. Guillaume Chauvet & Yves Tillé, 2006. "A fast algorithm for balanced sampling," Computational Statistics, Springer, vol. 21(1), pages 53-62, March.
    13. Chunrong Ai & Xiaohong Chen, 2003. "Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions," Econometrica, Econometric Society, vol. 71(6), pages 1795-1843, November.
    14. Amemiya, Takeshi, 1977. "The Maximum Likelihood and the Nonlinear Three-Stage Least Squares Estimator in the General Nonlinear Simultaneous Equation Model," Econometrica, Econometric Society, vol. 45(4), pages 955-968, May.
    15. Song Chen & Ingrid Van Keilegom, 2009. "Rejoinder on: A review on empirical likelihood methods for regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(3), pages 468-474, November.
    16. Hansen, Lars Peter & Singleton, Kenneth J, 1982. "Generalized Instrumental Variables Estimation of Nonlinear Rational Expectations Models," Econometrica, Econometric Society, vol. 50(5), pages 1269-1286, September.
    17. Donald, Stephen G. & Imbens, Guido W. & Newey, Whitney K., 2003. "Empirical likelihood estimation and consistent tests with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 117(1), pages 55-93, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yves G. Berger, 2023. "Unconditional empirical likelihood approach for analytic use of public survey data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 383-410, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lavergne, Pascal & Patilea, Valentin, 2013. "Smooth minimum distance estimation and testing with conditional estimating equations: Uniform in bandwidth theory," Journal of Econometrics, Elsevier, vol. 177(1), pages 47-59.
    2. Parente, Paulo M.D.C. & Smith, Richard J., 2017. "Tests of additional conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 200(1), pages 1-16.
    3. Christopher D. Walker, 2024. "Semiparametric Bayesian Inference for a Conditional Moment Equality Model," Papers 2410.16017, arXiv.org.
    4. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    5. Buchinsky, Moshe & Li, Fanghua & Liao, Zhipeng, 2022. "Estimation and inference of semiparametric models using data from several sources," Journal of Econometrics, Elsevier, vol. 226(1), pages 80-103.
    6. Chen, Xiaohong & Pouzo, Demian & Powell, James L., 2019. "Penalized sieve GEL for weighted average derivatives of nonparametric quantile IV regressions," Journal of Econometrics, Elsevier, vol. 213(1), pages 30-53.
    7. Lavergne, Pascal & Nguimkeu, Pierre, 2016. "A Hausman Specification Test of Conditional Moment Restrictions," TSE Working Papers 16-743, Toulouse School of Economics (TSE).
    8. Hsu, Shih-Hsun & Kuan, Chung-Ming, 2011. "Estimation of conditional moment restrictions without assuming parameter identifiability in the implied unconditional moments," Journal of Econometrics, Elsevier, vol. 165(1), pages 87-99.
    9. Xiaohong Chen & Victor Chernozhukov & Sokbae Lee & Whitney K. Newey, 2014. "Local Identification of Nonparametric and Semiparametric Models," Econometrica, Econometric Society, vol. 82(2), pages 785-809, March.
    10. Gospodinov, Nikolay & Otsu, Taisuke, 2012. "Local GMM estimation of time series models with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 170(2), pages 476-490.
    11. Ai, Chunrong & Chen, Xiaohong, 2012. "The semiparametric efficiency bound for models of sequential moment restrictions containing unknown functions," Journal of Econometrics, Elsevier, vol. 170(2), pages 442-457.
    12. Xiaohong Chen & David Jacho-Chávez & Oliver Linton, 2012. "Averaging of moment condition estimators," CeMMAP working papers 26/12, Institute for Fiscal Studies.
    13. Daniel Becker & Alois Kneip & Valentin Patilea, 2021. "Semiparametric inference for partially linear regressions with Box-Cox transformation," Papers 2106.10723, arXiv.org.
    14. Patrick Gagliardini & Diego Ronchetti, 2020. "Comparing Asset Pricing Models by the Conditional Hansen-Jagannathan Distance," Journal of Financial Econometrics, Oxford University Press, vol. 18(2), pages 333-394.
    15. Kunyang Song & Feiyu Jiang & Ke Zhu, 2024. "Estimation for conditional moment models based on martingale difference divergence," Papers 2404.11092, arXiv.org.
    16. Xiaohong Chen & Yin Jia Jeff Qiu, 2016. "Methods for Nonparametric and Semiparametric Regressions with Endogeneity: A Gentle Guide," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 259-290, October.
    17. Yuichi Kitamura, 2006. "Empirical Likelihood Methods in Econometrics: Theory and Practice," CIRJE F-Series CIRJE-F-430, CIRJE, Faculty of Economics, University of Tokyo.
    18. Stefan Boes, 2010. "Count Data Models with Correlated Unobserved Heterogeneity," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(3), pages 382-402, September.
    19. Hansen, Lars Peter, 2013. "Uncertainty Outside and Inside Economic Models," Nobel Prize in Economics documents 2013-7, Nobel Prize Committee.
    20. Zhang, Jia & Shi, Haoming & Tian, Lemeng & Xiao, Fengjun, 2019. "Penalized generalized empirical likelihood in high-dimensional weakly dependent data," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 270-283.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:24:y:2022:i:c:p:151-163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.