IDEAS home Printed from https://ideas.repec.org/a/eee/ecoser/v50y2021ics2212041621000784.html
   My bibliography  Save this article

Biological operability, a new concept based on ergonomics to assess the pertinence of ecosystem services optimization practices

Author

Listed:
  • Joly, Frédéric
  • Benoit, Marc
  • Martin, Raphael
  • Dumont, Bertrand

Abstract

How easily can we obtain optimal trade-offs between conflicting ecosystem services (ES)? We studied this question by crossing metrics of optimality and robustness in a model simulating sheep/cattle mixed-grazing (mixed-grazing is grazing by more than one species). We hypothesized that mixed-grazing processes (complementary use of vegetation and parasitism reduction) would improve ES bundles by increasing meat production with limited additional environmental costs. We assessed bundle optimality with a production possibility frontier and robustness through a management density approach (bundles can be obtained by one or several management decisions). We modeled two provisioning and two regulating ESs and confirmed that mixed-grazing can potentially improve the monetary value of bundles. Optimal bundles were the most robust, because of the shape of the biological function driving animal growth, according to the sheep/cattle ratio. This function is hump-shaped with a plateau that buffers small ratio deviations. It makes bundles optimal or quasi-optimal over a wide range of management decisions, which eases their optimization. For this reason, based on the principles of ergonomics and the definition of the adjective operable (‘capable of being put into use, operation, or practice’), we considered mixed-grazing a ‘Biologically Operable’ practice.

Suggested Citation

  • Joly, Frédéric & Benoit, Marc & Martin, Raphael & Dumont, Bertrand, 2021. "Biological operability, a new concept based on ergonomics to assess the pertinence of ecosystem services optimization practices," Ecosystem Services, Elsevier, vol. 50(C).
  • Handle: RePEc:eee:ecoser:v:50:y:2021:i:c:s2212041621000784
    DOI: 10.1016/j.ecoser.2021.101320
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2212041621000784
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecoser.2021.101320?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sattler, Claudia & Trampnau, Susanne & Schomers, Sarah & Meyer, Claas & Matzdorf, Bettina, 2013. "Multi-classification of payments for ecosystem services: How do classification characteristics relate to overall PES success?," Ecosystem Services, Elsevier, vol. 6(C), pages 31-45.
    2. Simon Schmidt & Christine Alewell & Katrin Meusburger, 2019. "Monthly RUSLE soil erosion risk of Swiss grasslands," Journal of Maps, Taylor & Francis Journals, vol. 15(2), pages 247-256, July.
    3. Robert J. Lempert & David G. Groves & Steven W. Popper & Steve C. Bankes, 2006. "A General, Analytic Method for Generating Robust Strategies and Narrative Scenarios," Management Science, INFORMS, vol. 52(4), pages 514-528, April.
    4. Fischer, Joern & Abson, David J. & Butsic, Van & Chappell, M. Jahi & Ekroos, Johan & Hanspach, Jan & Kuemmerle, Tobias & Smith, Henrik G. & von Wehrden, Henrik, 2014. "Land sparing versus land sharing: Moving forward," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 7(3), pages 149-157.
    5. Sabatier, R. & Mouysset, L., 2018. "A robustness-based viewpoint on the production-ecology trade-off in agroecosystems," Agricultural Systems, Elsevier, vol. 167(C), pages 1-9.
    6. Bekele, Elias G. & Lant, Christopher L. & Soman, Sethuram & Misgna, Girmay, 2013. "The evolution and empirical estimation of ecological-economic production possibilities frontiers," Ecological Economics, Elsevier, vol. 90(C), pages 1-9.
    7. Rodolphe Sabatier & Laurianne Mouysset, 2018. "A robustness-based viewpoint on the production-ecology trade-off in agroecosystems," Post-Print hal-02620971, HAL.
    8. Costanza, Robert & de Groot, Rudolf & Braat, Leon & Kubiszewski, Ida & Fioramonti, Lorenzo & Sutton, Paul & Farber, Steve & Grasso, Monica, 2017. "Twenty years of ecosystem services: How far have we come and how far do we still need to go?," Ecosystem Services, Elsevier, vol. 28(PA), pages 1-16.
    9. Kragt, Marit E. & Robertson, Michael J., 2014. "Quantifying ecosystem services trade-offs from agricultural practices," Ecological Economics, Elsevier, vol. 102(C), pages 147-157.
    10. Timothy D. Searchinger & Stefan Wirsenius & Tim Beringer & Patrice Dumas, 2018. "Assessing the efficiency of changes in land use for mitigating climate change," Nature, Nature, vol. 564(7735), pages 249-253, December.
    11. Vallet, Améline & Locatelli, Bruno & Levrel, Harold & Wunder, Sven & Seppelt, Ralf & Scholes, Robert J. & Oszwald, Johan, 2018. "Relationships Between Ecosystem Services: Comparing Methods for Assessing Tradeoffs and Synergies," Ecological Economics, Elsevier, vol. 150(C), pages 96-106.
    12. Lingqiao Kong & Hua Zheng & Yi Xiao & Zhiyun Ouyang & Cong Li & Jingjing Zhang & Binbin Huang, 2018. "Mapping Ecosystem Service Bundles to Detect Distinct Types of Multifunctionality within the Diverse Landscape of the Yangtze River Basin, China," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joly, Frédéric & Sabatier, Rodolphe & Tatin, Laurent & Mosnier, Claire & Ahearn, Ariell & Benoit, Marc & Hubert, Bernard & Deffuant, Guillaume, 2022. "Adaptive decision-making on stocking rates improves the resilience of a livestock system exposed to climate shocks," Ecological Modelling, Elsevier, vol. 464(C).
    2. Joly, Frédéric & Nozière, Pierre & Jacquiet, Philippe & Prache, Sophie & Dumont, Bertrand, 2023. "Metabolic assessment of biological mechanisms underlying agroecological systems: The example of parasite dilution and forage niche sharing in mixed-grazing," Agricultural Systems, Elsevier, vol. 210(C).
    3. Rachel E. Bitoun & Ewan Trégarot & Rodolphe Devillers, 2022. "Bridging theory and practice in ecosystem services mapping: a systematic review," Environment Systems and Decisions, Springer, vol. 42(1), pages 103-116, March.
    4. Merida, Vincent Elijiah & Cook, David & Ögmundarson, Ólafur & Davíðsdóttir, Brynhildur, 2022. "Ecosystem services and disservices of meat and dairy production: A systematic literature review," Ecosystem Services, Elsevier, vol. 58(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blachly, Ben & Sims, Charles & Warziniack, Travis, 2024. "Ecosystem complementarities: Evidence from over 700 U.S. watersheds," Ecological Economics, Elsevier, vol. 219(C).
    2. Aryal, Kishor & Maraseni, Tek & Apan, Armando, 2023. "Spatial dynamics of biophysical trade-offs and synergies among ecosystem services in the Himalayas," Ecosystem Services, Elsevier, vol. 59(C).
    3. Barbara Langlois & Vincent Martinet, 2023. "Defining cost-effective ways to improve ecosystem services provision in agroecosystems," Review of Agricultural, Food and Environmental Studies, Springer, vol. 104(2), pages 123-165, June.
    4. Ruiqi Zhang & Chunguang Hu & Yucheng Sun, 2024. "Decoding the Characteristics of Ecosystem Services and the Scale Effect in the Middle Reaches of the Yangtze River Urban Agglomeration: Insights for Planning and Management," Sustainability, MDPI, vol. 16(18), pages 1-26, September.
    5. Agudelo, César Augusto Ruiz & Bustos, Sandra Liliana Hurtado & Moreno, Carmen Alicia Parrado, 2020. "Modeling interactions among multiple ecosystem services. A critical review," Ecological Modelling, Elsevier, vol. 429(C).
    6. Hao Wang & Sander Meijerink & Erwin van der Krabben, 2020. "Institutional Design and Performance of Markets for Watershed Ecosystem Services: A Systematic Literature Review," Sustainability, MDPI, vol. 12(16), pages 1-26, August.
    7. Raviv, Orna & Shiri, Zemah-Shamir & Ido, Izhaki & Alon, Lotan, 2021. "The effect of wildfire and land-cover changes on the economic value of ecosystem services in Mount Carmel Biosphere Reserve, Israel," Ecosystem Services, Elsevier, vol. 49(C).
    8. Feng, Zhe & Jin, Xueru & Chen, Tianqian & Wu, Jiansheng, 2021. "Understanding trade-offs and synergies of ecosystem services to support the decision-making in the Beijing–Tianjin–Hebei region," Land Use Policy, Elsevier, vol. 106(C).
    9. Peng Tian & Jialin Li & Luodan Cao & Ruiliang Pu & Hongbo Gong & Haitao Zhang & Huilin Chen & Xiaodong Yang, 2021. "Assessing Matching Characteristics and Spatial Differences between Supply and Demand of Ecosystem Services: A Case Study in Hangzhou, China," Land, MDPI, vol. 10(6), pages 1-20, May.
    10. Bardsley, Douglas K. & Palazzo, Elisa & Stringer, Randy, 2019. "What should we conserve? Farmer narratives on biodiversity values in the McLaren Vale, South Australia," Land Use Policy, Elsevier, vol. 83(C), pages 594-605.
    11. Shuang Gan & Yu Xiao & Keyu Qin & Jingya Liu & Jie Xu & Yangyang Wang & Yingnan Niu & Mengdong Huang & Gaodi Xie, 2022. "Analyzing the Interrelationships among Various Ecosystem Services from the Perspective of Ecosystem Service Bundles in Shenyang, China," Land, MDPI, vol. 11(4), pages 1-17, April.
    12. C. Brannon Andersen & R. Kyle Donovan & John E. Quinn, 2015. "Human Appropriation of Net Primary Production (HANPP) in an Agriculturally-Dominated Watershed, Southeastern USA," Land, MDPI, vol. 4(2), pages 1-28, June.
    13. Moreno-Llorca, R. & Vaz, A.S. & Herrero, J. & Millares, A. & Bonet-García, F.J. & Alcaraz-Segura, D., 2020. "Multi-scale evolution of ecosystem services’ supply in Sierra Nevada (Spain): An assessment over the last half-century," Ecosystem Services, Elsevier, vol. 46(C).
    14. Jones, Sarah K. & Boundaogo, Mansour & DeClerck, Fabrice A. & Estrada-Carmona, Natalia & Mirumachi, Naho & Mulligan, Mark, 2019. "Insights into the importance of ecosystem services to human well-being in reservoir landscapes," Ecosystem Services, Elsevier, vol. 39(C).
    15. De Lapparent, Alice & Sabatier, Rodolphe & Paut, Raphaël & Martin, Sophie, 2023. "Perennial transitions from market gardening towards mixed fruit tree - vegetable systems," Agricultural Systems, Elsevier, vol. 207(C).
    16. Huashun Dou & Xiaobing Li & Shengkun Li & Dongliang Dang, 2018. "How to Detect Scale Effect of Ecosystem Services Supply? A Comprehensive Insight from Xilinhot in Inner Mongolia, China," Sustainability, MDPI, vol. 10(10), pages 1-21, October.
    17. Qian Xu & Ying Yang & Ren Yang & Li-Si Zha & Zi-Qing Lin & Shu-Hao Shang, 2023. "Spatial Trade-Offs and Synergies between Ecosystem Services in Guangdong Province, China," Land, MDPI, vol. 13(1), pages 1-19, December.
    18. Suping Zeng & Chunqian Jiang & Yanfeng Bai & Hui Wang & Lina Guo & Jie Zhang, 2024. "Assessing the Scale Effects of Dynamics and Socio-Ecological Drivers of Ecosystem Service Interactions in the Lishui River Basin, China," Sustainability, MDPI, vol. 16(20), pages 1-24, October.
    19. Kun Li & Junchen Chen & Jingyu Lin & Huanyu Zhang & Yujing Xie & Zhaohua Li & Ling Wang, 2022. "Identifying Ecosystem Service Trade-Offs and Their Response to Landscape Patterns at Different Scales in an Agricultural Basin in Central China," Land, MDPI, vol. 11(8), pages 1-16, August.
    20. Benedek Kiss & Jose Dinis Silvestre & Rita Andrade Santos & Zsuzsa Szalay, 2021. "Environmental and Economic Optimisation of Buildings in Portugal and Hungary," Sustainability, MDPI, vol. 13(24), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecoser:v:50:y:2021:i:c:s2212041621000784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/ecosystem-services .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.