IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v216y2020i1p235-245.html
   My bibliography  Save this article

Robust causality test of infinite variance processes

Author

Listed:
  • Akashi, Fumiya
  • Taniguchi, Masanobu
  • Monti, Anna Clara

Abstract

This paper develops a robust causality test for time series with infinite variance innovation processes. First, we introduce a measure of dependence for vector nonparametric linear processes, and derive the asymptotic distribution of the test statistic by Taniguchi et al. (1996) in the infinite variance case. Second, we construct a weighted version of the generalized empirical likelihood (GEL) test statistic, called the self-weighted GEL statistic in the time domain. The limiting distribution of the self-weighted GEL test statistic is shown to be the usual chi-squared one regardless of whether the model has finite variance or not. Some simulation experiments illustrate satisfactory finite sample performances of the proposed test.

Suggested Citation

  • Akashi, Fumiya & Taniguchi, Masanobu & Monti, Anna Clara, 2020. "Robust causality test of infinite variance processes," Journal of Econometrics, Elsevier, vol. 216(1), pages 235-245.
  • Handle: RePEc:eee:econom:v:216:y:2020:i:1:p:235-245
    DOI: 10.1016/j.jeconom.2020.01.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030440762030021X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2020.01.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francesco Bravo, 2009. "Blockwise generalized empirical likelihood inference for non-linear dynamic moment conditions models," Econometrics Journal, Royal Economic Society, vol. 12(2), pages 208-231, July.
    2. Smith, Richard J, 1997. "Alternative Semi-parametric Likelihood Approaches to Generalised Method of Moments Estimation," Economic Journal, Royal Economic Society, vol. 107(441), pages 503-519, March.
    3. Yuichi Kitamura & Michael Stutzer, 1997. "An Information-Theoretic Alternative to Generalized Method of Moments Estimation," Econometrica, Econometric Society, vol. 65(4), pages 861-874, July.
    4. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    5. Benoit Mandelbrot, 1963. "New Methods in Statistical Economics," Journal of Political Economy, University of Chicago Press, vol. 71(5), pages 421-421.
    6. Shiqing Ling, 2005. "Self‐weighted least absolute deviation estimation for infinite variance autoregressive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(3), pages 381-393, June.
    7. Fumiya Akashi, 2017. "Self-weighted generalized empirical likelihood methods for hypothesis testing in infinite variance ARMA models," Statistical Inference for Stochastic Processes, Springer, vol. 20(3), pages 291-313, October.
    8. Davis, Richard & Resnick, Sidney, 1985. "More limit theory for the sample correlation function of moving averages," Stochastic Processes and their Applications, Elsevier, vol. 20(2), pages 257-279, September.
    9. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    10. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    11. Taniguchi, Masanobu & Puri, Madan L. & Kondo, Masao, 1996. "Nonparametric Approach for Non-Gaussian Vector Stationary Processes," Journal of Multivariate Analysis, Elsevier, vol. 56(2), pages 259-283, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hill, Jonathan B., 2015. "Robust Generalized Empirical Likelihood for heavy tailed autoregressions with conditionally heteroscedastic errors," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 131-152.
    2. Nicky L. Grant & Richard J. Smith, 2018. "GEL-based inference with unconditional moment inequality restrictions," CeMMAP working papers CWP23/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Hill, Jonathan B. & Prokhorov, Artem, 2016. "GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference," Journal of Econometrics, Elsevier, vol. 190(1), pages 18-45.
    4. Madeira, João & Palma, Nuno, 2018. "Measuring monetary policy deviations from the Taylor rule," Economics Letters, Elsevier, vol. 168(C), pages 25-27.
    5. Fumiya Akashi, 2017. "Self-weighted generalized empirical likelihood methods for hypothesis testing in infinite variance ARMA models," Statistical Inference for Stochastic Processes, Springer, vol. 20(3), pages 291-313, October.
    6. Cui, Li-E & Zhao, Puying & Tang, Niansheng, 2022. "Generalized empirical likelihood for nonsmooth estimating equations with missing data," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    7. Parente, Paulo M.D.C. & Smith, Richard J., 2017. "Tests of additional conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 200(1), pages 1-16.
    8. Nicky L. Grant & Richard J. Smith, 2018. "GEL-Based Inference from Unconditional Moment Inequality Restrictions," Economics Discussion Paper Series 1802, Economics, The University of Manchester.
    9. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    10. Whitney K. Newey & Frank Windmeijer, 2005. "GMM with many weak moment conditions," CeMMAP working papers CWP18/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    12. Giuseppe Ragusa, 2011. "Minimum Divergence, Generalized Empirical Likelihoods, and Higher Order Expansions," Econometric Reviews, Taylor & Francis Journals, vol. 30(4), pages 406-456, August.
    13. Pierre Chausse, 2017. "Regularized Empirical Likelihood as a Solution to the No Moment," Working Papers 1708, University of Waterloo, Department of Economics, revised Nov 2017.
    14. Nicky L. Grant & Richard J. Smith, 2018. "GEL-based inference with unconditional moment inequality restrictions," CeMMAP working papers 23/18, Institute for Fiscal Studies.
    15. Li, Haiqi & Fan, Rui & Park, Sung Y., 2018. "Generalized empirical likelihood specification test robust to local misspecification," Economics Letters, Elsevier, vol. 171(C), pages 149-153.
    16. Jeffrey M. Wooldridge, 2004. "Estimating average partial effects under conditional moment independence assumptions," CeMMAP working papers CWP03/04, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Mikio Ito & Akihiko Noda, 2012. "The GEL estimates resolve the risk-free rate puzzle in Japan," Applied Financial Economics, Taylor & Francis Journals, vol. 22(5), pages 365-374, March.
    18. Caio Vigo Pereira & Marcio Laurini, 2020. "Portfolio Efficiency Tests with Conditioning Information - Comparing GMM and GEL Estimators," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202014, University of Kansas, Department of Economics, revised Sep 2020.
    19. Donald, Stephen G. & Imbens, Guido W. & Newey, Whitney K., 2003. "Empirical likelihood estimation and consistent tests with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 117(1), pages 55-93, November.
    20. Smith, Richard J., 2005. "Automatic Positive Semidefinite Hac Covariance Matrix And Gmm Estimation," Econometric Theory, Cambridge University Press, vol. 21(1), pages 158-170, February.

    More about this item

    Keywords

    Granger causality; Nonparametric hypothesis testing; Generalized empirical likelihood; Self-weighting;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:216:y:2020:i:1:p:235-245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.