IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v488y2024ics0304380023003319.html
   My bibliography  Save this article

Information sharing promotes bacterial diversity in oligotrophic environment with low-dose X-ray radiation based on modeling and simulation of agent-based model

Author

Listed:
  • Zhang, Xiaojun
  • Li, Baohuan

Abstract

It remains unclear why bacterial diversity was formed and maintained in oligotrophic environment (OE) with low-dose X-ray radiation (LDXR) due to violation of the competitive exclusion principle in ecology. Based on microbial ecology, bioinformatics, cybernetics, experimental phenomena and data, a new hypothesis was proposed to elucidate information sharing mechanisms driving bacterial community succession with high diversity in OE with LDXR. According to hypothesis, a valid agent-based model (ABM) of cellular automation (CA) was developed to quantitatively describe the hypothesis, and the agent-based simulation sufficiently proved that as the bacterial individuals conduct cooperation to indiscriminately share information of substrate positions with each other in OE with LDXR, it can effectively increase the survival probabilities of all bacterial species, alleviate interspecific competition, and prevent any bacterial species from being dominant, which is beneficial to the coexistence of most species and promotes bacterial diversity during community succession. The results of agent-based simulation are highly similar to the observed phenomena and data in the experiments, therefore sufficiently confirm the proposed hypothesis.

Suggested Citation

  • Zhang, Xiaojun & Li, Baohuan, 2024. "Information sharing promotes bacterial diversity in oligotrophic environment with low-dose X-ray radiation based on modeling and simulation of agent-based model," Ecological Modelling, Elsevier, vol. 488(C).
  • Handle: RePEc:eee:ecomod:v:488:y:2024:i:c:s0304380023003319
    DOI: 10.1016/j.ecolmodel.2023.110601
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380023003319
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2023.110601?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Zhibin & Yan, Chuan & Krebs, Charles J. & Stenseth, Nils Chr., 2015. "Ecological non-monotonicity and its effects on complexity and stability of populations, communities and ecosystems," Ecological Modelling, Elsevier, vol. 312(C), pages 374-384.
    2. Hu, Dawei & Du, Xiaojie & Li, Leyuan & Sun, Yi & Zhang, Jinhui & Bai, Fanlu, 2016. "Robust stability mechanism of an artificial ecosystem based on biological mutations and synergies driven by ecological information," Ecological Modelling, Elsevier, vol. 319(C), pages 208-217.
    3. Eric D. Kelsic & Jeffrey Zhao & Kalin Vetsigian & Roy Kishony, 2015. "Counteraction of antibiotic production and degradation stabilizes microbial communities," Nature, Nature, vol. 521(7553), pages 516-519, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Søren Christensen & Wilhelmina H. Gera Hol & Viola Kurm & Mette Vestergård, 2021. "Increased Likelihood of High Nitrous Oxide (N 2 O) Exchange in Soils at Reduced Microbial Diversity," Sustainability, MDPI, vol. 13(4), pages 1-8, February.
    2. Gerrit Ansmann & Tobias Bollenbach, 2021. "Building clone-consistent ecosystem models," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-25, February.
    3. Li Xie & Wenying Shou, 2021. "Steering ecological-evolutionary dynamics to improve artificial selection of microbial communities," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    4. Yang, Xinbin & Xu, Xinming & Hu, Dawei, 2020. "Succession mechanism of microbial community with high species diversity in nutrient-deficient environments with low-dose ionizing radiation," Ecological Modelling, Elsevier, vol. 435(C).
    5. Yan, Chuan & Zhang, Zhibin, 2018. "Dome-shaped transition between positive and negative interactions maintains higher persistence and biomass in more complex ecological networks," Ecological Modelling, Elsevier, vol. 370(C), pages 14-21.
    6. Eran Even-Tov & Shira Omer Bendori & Julie Valastyan & Xiaobo Ke & Shaul Pollak & Tasneem Bareia & Ishay Ben-Zion & Bonnie L Bassler & Avigdor Eldar, 2016. "Social Evolution Selects for Redundancy in Bacterial Quorum Sensing," PLOS Biology, Public Library of Science, vol. 14(2), pages 1-18, February.
    7. Roy, Trina & Ghosh, Sinchan & Bhattacharya, Sabyasachi, 2022. "A new growth curve model portraying the stress response regulation of fish: Illustration through particle motion and real data," Ecological Modelling, Elsevier, vol. 470(C).
    8. Zhang, Zeyu & Bearup, Daniel & Guo, Guanming & Zhang, Helin & Liao, Jinbao, 2022. "Competition modes determine ecosystem stability in rock–paper–scissors games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:488:y:2024:i:c:s0304380023003319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.