IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v487y2024ics0304380023002697.html
   My bibliography  Save this article

LoggingLab: An R package to simulate reduced-impact selective logging in tropical forests using forest inventory data

Author

Listed:
  • Badouard, Vincyane
  • Schmitt, Sylvain
  • Salzet, Guillaume
  • Gaquiere, Thomas
  • Rojat, Margaux
  • Bedeau, Caroline
  • Brunaux, Olivier
  • Derroire, Géraldine

Abstract

Even where Reduced-Impact Logging (RIL) practices are applied, selective logging causes substantial damage to tropical forests. To further reduce selective logging damage, the practices that cause the most damage need to be identified and alternatives tested. To this end, we developed the R package LoggingLab, a spatially-explicit and individual tree-based selective logging simulator and demonstrated its functions using data from French Guiana. LoggingLab explicitly simulates damage during each stage of the selective logging process taking into account topography and hydrography, which are main constraints on logging. Most LoggingLab parameters can be easily adjusted to a wide range of local contexts. LoggingLab can also be coupled with forest dynamics models to simulate the long- term effects of different selective logging scenarios.

Suggested Citation

  • Badouard, Vincyane & Schmitt, Sylvain & Salzet, Guillaume & Gaquiere, Thomas & Rojat, Margaux & Bedeau, Caroline & Brunaux, Olivier & Derroire, Géraldine, 2024. "LoggingLab: An R package to simulate reduced-impact selective logging in tropical forests using forest inventory data," Ecological Modelling, Elsevier, vol. 487(C).
  • Handle: RePEc:eee:ecomod:v:487:y:2024:i:c:s0304380023002697
    DOI: 10.1016/j.ecolmodel.2023.110539
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380023002697
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2023.110539?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boltz, Frederick & Holmes, Thomas P. & Carter, Douglas R., 2003. "Economic and environmental impacts of conventional and reduced-impact logging in Tropical South America: a comparative review," Forest Policy and Economics, Elsevier, vol. 5(1), pages 69-81, January.
    2. Sato, Hisashi & Itoh, Akihiko & Kohyama, Takashi, 2007. "SEIB–DGVM: A new Dynamic Global Vegetation Model using a spatially explicit individual-based approach," Ecological Modelling, Elsevier, vol. 200(3), pages 279-307.
    3. Jos Barlow & Filipe França & Toby A. Gardner & Christina C. Hicks & Gareth D. Lennox & Erika Berenguer & Leandro Castello & Evan P. Economo & Joice Ferreira & Benoit Guénard & Cecília Gontijo Leal & V, 2018. "The future of hyperdiverse tropical ecosystems," Nature, Nature, vol. 559(7715), pages 517-526, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yutong Zhang & Wei Zhou & Danxue Luo, 2023. "The Relationship Research between Biodiversity Conservation and Economic Growth: From Multi-Level Attempts to Key Development," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    2. Carmenta, Rachel & Cammelli, Federico & Dressler, Wolfram & Verbicaro, Camila & Zaehringer, Julie G., 2021. "Between a rock and a hard place: The burdens of uncontrolled fire for smallholders across the tropics," World Development, Elsevier, vol. 145(C).
    3. Numazawa, Camila T.D. & Numazawa, Sueo & Pacca, Sergio & John, Vanderley M., 2017. "Logging residues and CO2 of Brazilian Amazon timber: Two case studies of forest harvesting," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 280-285.
    4. Horn, Henrik & Lavenius, Axel & Sanctuary, Mark, 2024. "Investment Treaties and the Threat to Biodiversity," Working Paper Series 1496, Research Institute of Industrial Economics.
    5. Bohn, Friedrich J. & Frank, Karin & Huth, Andreas, 2014. "Of climate and its resulting tree growth: Simulating the productivity of temperate forests," Ecological Modelling, Elsevier, vol. 278(C), pages 9-17.
    6. Taubert, Franziska & Frank, Karin & Huth, Andreas, 2012. "A review of grassland models in the biofuel context," Ecological Modelling, Elsevier, vol. 245(C), pages 84-93.
    7. Upendra Aryal & Prem Raj Neupane & Bhawana Rijal & Michael Manthey, 2022. "Timber Losses during Harvesting in Managed Shorea robusta Forests of Nepal," Land, MDPI, vol. 11(1), pages 1-15, January.
    8. Rau, E-Ping & Fischer, Fabian & Joetzjer, Émilie & Maréchaux, Isabelle & Sun, I Fang & Chave, Jérôme, 2022. "Transferability of an individual- and trait-based forest dynamics model: A test case across the tropics," Ecological Modelling, Elsevier, vol. 463(C).
    9. Esther Reith & Elizabeth Gosling & Thomas Knoke & Carola Paul, 2020. "How Much Agroforestry Is Needed to Achieve Multifunctional Landscapes at the Forest Frontier?—Coupling Expert Opinion with Robust Goal Programming," Sustainability, MDPI, vol. 12(15), pages 1-27, July.
    10. Indrajaya, Yonky & van der Werf, Edwin & Weikard, Hans-Peter & Mohren, Frits & van Ierland, Ekko C., 2016. "The potential of REDD+ for carbon sequestration in tropical forests: Supply curves for carbon storage for Kalimantan, Indonesia," Forest Policy and Economics, Elsevier, vol. 71(C), pages 1-10.
    11. Bellassen, V. & le Maire, G. & Guin, O. & Dhôte, J.F. & Ciais, P. & Viovy, N., 2011. "Modelling forest management within a global vegetation model—Part 2: Model validation from a tree to a continental scale," Ecological Modelling, Elsevier, vol. 222(1), pages 57-75.
    12. Zhang, Tao & Lichstein, Jeremy W. & Birdsey, Richard A., 2014. "Spatial and temporal heterogeneity in the dynamics of eastern U.S. forests: Implications for developing broad-scale forest dynamics models," Ecological Modelling, Elsevier, vol. 279(C), pages 89-99.
    13. Medjibe, Vincent P. & Putz, Francis E., 2012. "Cost comparisons of reduced-impact and conventional logging in the tropics," Journal of Forest Economics, Elsevier, vol. 18(3), pages 242-256.
    14. Edward B. Barbier & Joanne C. Burgess, 2021. "Sustainable Use of the Environment, Planetary Boundaries and Market Power," Sustainability, MDPI, vol. 13(2), pages 1-19, January.
    15. World Bank, 2021. "Banking on Protected Areas," World Bank Publications - Reports 35737, The World Bank Group.
    16. Vance, Richard R. & Steele, Mark A. & Forrester, Graham E., 2010. "Using an individual-based model to quantify scale transition in demographic rate functions: Deaths in a coral reef fish," Ecological Modelling, Elsevier, vol. 221(16), pages 1907-1921.
    17. Kruse, Stefan & Wieczorek, Mareike & Jeltsch, Florian & Herzschuh, Ulrike, 2016. "Treeline dynamics in Siberia under changing climates as inferred from an individual-based model for Larix," Ecological Modelling, Elsevier, vol. 338(C), pages 101-121.
    18. Bellassen, V. & Le Maire, G. & Dhôte, J.F. & Ciais, P. & Viovy, N., 2010. "Modelling forest management within a global vegetation model—Part 1: Model structure and general behaviour," Ecological Modelling, Elsevier, vol. 221(20), pages 2458-2474.
    19. Wramneby, Anna & Smith, Benjamin & Zaehle, Sönke & Sykes, Martin T., 2008. "Parameter uncertainties in the modelling of vegetation dynamics—Effects on tree community structure and ecosystem functioning in European forest biomes," Ecological Modelling, Elsevier, vol. 216(3), pages 277-290.
    20. Eric Rega Christophe Bayala & Kwabena Owusu Asubonteng & Mirjam Ros-Tonen & Houria Djoudi & Freddie Sayi Siangulube & James Reed & Terry Sunderland, 2023. "Using Scenario Building and Participatory Mapping to Negotiate Conservation-Development Trade-Offs in Northern Ghana," Land, MDPI, vol. 12(3), pages 1-29, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:487:y:2024:i:c:s0304380023002697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.