IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v484y2023ics0304380023001837.html
   My bibliography  Save this article

The application of semantic modelling to map pollination service provisioning at large landscape scales

Author

Listed:
  • Pashanejad, Ehsan
  • Thierry, Hugo
  • Robinson, Brian E.
  • Parrott, Lael

Abstract

Mapping ecosystem services (ES), including crop pollination by wild insect pollinators, is challenging due to the number of variables involved and the spatial-temporal dimensions of their interactions. To enhance the synergistic relationship between pollination service and crop yield in agricultural landscapes, a better appreciation of the spatial dynamics of pollination service provisioning is needed. Spatially explicit modelling approaches have been used to investigate how different land cover types influence the distribution and abundance of wild bee pollinators in agricultural landscapes. However, an integrated dynamic and spatial modelling framework is needed to address the complexities of pollination supply mapping at the landscape scale. The Artificial Intelligence for Environment and Sustainability (ARIES) framework is a collaborative, spatially explicit and integrated tool for ES assessment. We applied a set of high-resolution process-based pollination models within ARIES to represent landscape capacity to supply pollination by wild bees at the local scale in the Canadian prairies. We also developed a systematic approach to perform a global sensitivity analysis by using a surrogate model (Gaussian Process Regression) and variance-based sensitivity analysis for the selected uncertain key parameters of the model. We modelled pollination dynamics through the mechanistic behavior of native bee guilds, including foraging distance, nesting ability, flight activity, the relative importance of bee guilds, and seasonal variation of floral resources. We focused on three guilds, bumblebees, sweat bees and mining bees, which differed by their nesting habits, floral preferences, and flight distances. We found that over 45% of pollination-dependent croplands in our study area lack wild pollination. The global sensitivity analysis revealed the significance of all key parameters, with seasonal activity across guilds identified as the key driving factors. Our results highlight the significance of the ecological role of wild bees in agricultural landscapes and the sensitivity analysis underscores the importance of temporal dynamics in ecological modeling and pollination.

Suggested Citation

  • Pashanejad, Ehsan & Thierry, Hugo & Robinson, Brian E. & Parrott, Lael, 2023. "The application of semantic modelling to map pollination service provisioning at large landscape scales," Ecological Modelling, Elsevier, vol. 484(C).
  • Handle: RePEc:eee:ecomod:v:484:y:2023:i:c:s0304380023001837
    DOI: 10.1016/j.ecolmodel.2023.110452
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380023001837
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2023.110452?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lo Piano, Samuele & Ferretti, Federico & Puy, Arnald & Albrecht, Daniel & Saltelli, Andrea, 2021. "Variance-based sensitivity analysis: The quest for better estimators and designs between explorativity and economy," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    2. Grazia Zulian & Joachim Maes & Maria Luisa Paracchini, 2013. "Linking Land Cover Data and Crop Yields for Mapping and Assessment of Pollination Services in Europe," Land, MDPI, vol. 2(3), pages 1-21, September.
    3. Gallai, Nicola & Salles, Jean-Michel & Settele, Josef & Vaissière, Bernard E., 2009. "Economic valuation of the vulnerability of world agriculture confronted with pollinator decline," Ecological Economics, Elsevier, vol. 68(3), pages 810-821, January.
    4. Ferdinando Villa & Kenneth J Bagstad & Brian Voigt & Gary W Johnson & Rosimeiry Portela & Miroslav Honzák & David Batker, 2014. "A Methodology for Adaptable and Robust Ecosystem Services Assessment," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-18, March.
    5. Perennes, Marie & Diekötter, Tim & Groß, Jens & Burkhard, Benjamin, 2021. "A hierarchical framework for mapping pollination ecosystem service potential at the local scale," Ecological Modelling, Elsevier, vol. 444(C).
    6. Olsson, Ola & Brown, Joel S. & Helf, Kurt L., 2008. "A guide to central place effects in foraging," Theoretical Population Biology, Elsevier, vol. 74(1), pages 22-33.
    7. Olivia Kline & Neelendra K. Joshi, 2020. "Mitigating the Effects of Habitat Loss on Solitary Bees in Agricultural Ecosystems," Agriculture, MDPI, vol. 10(4), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramón Espinel & Gricelda Herrera-Franco & José Luis Rivadeneira García & Paulo Escandón-Panchana, 2024. "Artificial Intelligence in Agricultural Mapping: A Review," Agriculture, MDPI, vol. 14(7), pages 1-36, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Molla Sitotaw, Tegegne & Willemen, Louise & Tsegaye Meshesha, Derege & Nelson, Andrew, 2024. "Empirical assessments of small-scale ecosystem service flows in rural mosaic landscapes in the Ethiopian highlands," Ecosystem Services, Elsevier, vol. 67(C).
    2. Gutiérrez-Arellano, Claudia & Mulligan, Mark, 2020. "Small-sized protected areas contribute more per unit area to tropical crop pollination than large protected areas," Ecosystem Services, Elsevier, vol. 44(C).
    3. Perennes, Marie & Diekötter, Tim & Groß, Jens & Burkhard, Benjamin, 2021. "A hierarchical framework for mapping pollination ecosystem service potential at the local scale," Ecological Modelling, Elsevier, vol. 444(C).
    4. Semeraro, Teodoro & Pomes, Alessandro & Del Giudice, Cecilia & Negro, Danilo & Aretano, Roberta, 2018. "Planning ground based utility scale solar energy as green infrastructure to enhance ecosystem services," Energy Policy, Elsevier, vol. 117(C), pages 218-227.
    5. Balzan, Mario V & Caruana, Julio & Zammit, Annrica, 2018. "Assessing the capacity and flow of ecosystem services in multifunctional landscapes: Evidence of a rural-urban gradient in a Mediterranean small island state," Land Use Policy, Elsevier, vol. 75(C), pages 711-725.
    6. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.
    7. Kathrin Stenchly & Marc Victor Hansen & Katharina Stein & Andreas Buerkert & Wilhelm Loewenstein, 2018. "Income Vulnerability of West African Farming Households to Losses in Pollination Services: A Case Study from Ouagadougou, Burkina Faso," Sustainability, MDPI, vol. 10(11), pages 1-12, November.
    8. Grazia Zulian & Joachim Maes & Maria Luisa Paracchini, 2013. "Linking Land Cover Data and Crop Yields for Mapping and Assessment of Pollination Services in Europe," Land, MDPI, vol. 2(3), pages 1-21, September.
    9. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    10. Barbara Langlois & Vincent Martinet, 2023. "Defining cost-effective ways to improve ecosystem services provision in agroecosystems," Review of Agricultural, Food and Environmental Studies, Springer, vol. 104(2), pages 123-165, June.
    11. Lingge Zhang & Ningke Hu, 2021. "Spatial Variation and Terrain Gradient Effect of Ecosystem Services in Heihe River Basin over the Past 20 Years," Sustainability, MDPI, vol. 13(20), pages 1-26, October.
    12. Lippert, Christian & Feuerbacher, Arndt & Narjes, Manuel, 2021. "Revisiting the economic valuation of agricultural losses due to large-scale changes in pollinator populations," Ecological Economics, Elsevier, vol. 180(C).
    13. Morgane Barbet-Massin & Jean-Michel Salles & Franck Courchamp, 2020. "The economic cost of control of the invasive yellow-legged Asian hornet," Post-Print hal-02548072, HAL.
    14. Luciano Pilati & Vasco Boatto, 2014. "Jointness in Sites: The Case of Migratory Beekeeping," DEM Discussion Papers 2014/10, Department of Economics and Management.
    15. Nicholas W Calderone, 2012. "Insect Pollinated Crops, Insect Pollinators and US Agriculture: Trend Analysis of Aggregate Data for the Period 1992–2009," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-27, May.
    16. Soy-Massoni, Emma & Langemeyer, Johannes & Varga, Diego & Sáez, Marc & Pintó, Josep, 2016. "The importance of ecosystem services in coastal agricultural landscapes: Case study from the Costa Brava, Catalonia," Ecosystem Services, Elsevier, vol. 17(C), pages 43-52.
    17. Ceaușu, Silvia & Apaza-Quevedo, Amira & Schmid, Marlen & Martín-López, Berta & Cortés-Avizanda, Ainara & Maes, Joachim & Brotons, Lluís & Queiroz, Cibele & Pereira, Henrique M., 2021. "Ecosystem service mapping needs to capture more effectively the biodiversity important for service supply," Ecosystem Services, Elsevier, vol. 48(C).
    18. Chian Jones Ritten & Christopher Bastian & Jason F. Shogren & Thadchaigeni Panchalingam & Mariah D. Ehmke & Gregory Parkhurst, 2017. "Understanding Pollinator Habitat Conservation under Current Policy Using Economic Experiments," Land, MDPI, vol. 6(3), pages 1-13, August.
    19. John Tzilivakis & D. Warner & A. Green & K. Lewis, 2015. "Adapting to climate change: assessing the vulnerability of ecosystem services in Europe in the context of rural development," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(4), pages 547-572, April.
    20. Miettinen, Antti & Korpela, Eeva-Liisa & Hyytiäinen, Kari & Kuussaari, Mikko, 2014. "Cost-effectiveness of agri-environmental measures when aiming at promoting ecosystem service availability, species diversity or species of conservation concern," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182686, European Association of Agricultural Economists.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:484:y:2023:i:c:s0304380023001837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.