IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v483y2023ics0304380023001813.html
   My bibliography  Save this article

Evaluating the cascade dam construction effects on endemic fish habitat and population status in spawning sites of Lancang River (in Tibet), China

Author

Listed:
  • Wang, Qianqian
  • Li, Pengcheng
  • Zhang, Wenming
  • Cong, Nan
  • Xi, Yuqian
  • Xiao, Lirong
  • Wang, Yihang
  • Yao, Weiwei

Abstract

Cascade dam constructions will alter the habitat of spawning sites and affect fish population in the Lancang River basin. This paper examines the impacts of cascade dam construction on four spawning sites, focusing on two co-distributed and endemic fish species: Schizothorax prenanti and Schizothorax davidi. An ecohydraulic modeling framework that combined hydro-morphodynamic, habitat, and population models was used to investigate changes in habitat quality and fish population under two scenarios: no-dam and with-dam. Fish habitat quality was evaluated using the habitat suitability index, and population fluctuations were assessed by the abundance and density of fish populations at all life stages. The simulation results indicated that cascade dam construction would fragment the spawning site habitat in the tailwater zone of the main stream and result in a decrease in fish population abundance and density. Conversely, spawning site habitats in backwater zone of tributaries would improve, and fish population abundance and density would increase. Additionally, the simulation results showed that the magnitude of fish population variations varied by species and life stages. These results highlight the different responses of spawning site location, fish species, and life stages to dam construction, which can help identify areas of the habitat with higher potential for finer-scale endemic fish conservation and recovery efforts. This study provides a comprehensive framework tool for fish ecological evaluation in dammed rivers, which has the potential to assist decision-makers involved in river ecosystem ecological conservation.

Suggested Citation

  • Wang, Qianqian & Li, Pengcheng & Zhang, Wenming & Cong, Nan & Xi, Yuqian & Xiao, Lirong & Wang, Yihang & Yao, Weiwei, 2023. "Evaluating the cascade dam construction effects on endemic fish habitat and population status in spawning sites of Lancang River (in Tibet), China," Ecological Modelling, Elsevier, vol. 483(C).
  • Handle: RePEc:eee:ecomod:v:483:y:2023:i:c:s0304380023001813
    DOI: 10.1016/j.ecolmodel.2023.110450
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380023001813
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2023.110450?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jager, Henriette I. & DeAngelis, Donald L., 2018. "The confluences of ideas leading to, and the flow of ideas emerging from, individual-based modeling of riverine fishes," Ecological Modelling, Elsevier, vol. 384(C), pages 341-352.
    2. Yao, Weiwei, 2021. "Ecohydraulic tools for aquatic fauna habitat and population status assessment, analysis and monitoring aimed at promoting integrated river management," Ecological Modelling, Elsevier, vol. 456(C).
    3. Paweł Tomczyk & Bernard Gałka & Mirosław Wiatkowski & Bogna Buta & Łukasz Gruss, 2021. "Analysis of Spatial Distribution of Sediment Pollutants Accumulated in the Vicinity of a Small Hydropower Plant," Energies, MDPI, vol. 14(18), pages 1-20, September.
    4. R. J. P. Schmitt & S. Bizzi & A. Castelletti & G. M. Kondolf, 2018. "Improved trade-offs of hydropower and sand connectivity by strategic dam planning in the Mekong," Nature Sustainability, Nature, vol. 1(2), pages 96-104, February.
    5. Yadu Pokhrel & Amar Deep Tiwari, 2022. "Re-operating dams in the Mekong," Nature Sustainability, Nature, vol. 5(12), pages 1005-1006, December.
    6. Zhong, Ruida & Zhao, Tongtiegang & He, Yanhu & Chen, Xiaohong, 2019. "Hydropower change of the water tower of Asia in 21st century: A case of the Lancang River hydropower base, upper Mekong," Energy, Elsevier, vol. 179(C), pages 685-696.
    7. Boudreault, Jeremie & Bergeron, Normand E & St-Hilaire, Andre & Chebana, Fateh, 2022. "A new look at habitat suitability curves through functional data analysis," Ecological Modelling, Elsevier, vol. 467(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ly, Sophanna & Uk, Sovannara & Theng, Vouchlay & Kaing, Vinhteang & Yoshimura, Chihiro, 2024. "Integration of life cycle and habitat conditions in modeling fish biomass in the floodplain of the Lower Mekong Basin," Ecological Modelling, Elsevier, vol. 488(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei, Kaixuan & Chang, Jianxia & Long, Ruihao & Wang, Yimin & Zhang, Hongxue, 2022. "Cascade hydropower station risk operation under the condition of inflow uncertainty," Energy, Elsevier, vol. 244(PA).
    2. Shiwei Yang & Yuanqin Wei & Junguang Chen & Yuanming Wang & Ruifeng Liang & Kefeng Li, 2024. "Multi-Objective Optimization and Coordination of Power Generation, Ecological Needs, and Carbon Emissions in Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 123-136, January.
    3. Jaewon Jung & Sungeun Jung & Junhyeong Lee & Myungjin Lee & Hung Soo Kim, 2021. "Analysis of Small Hydropower Generation Potential: (2) Future Prospect of the Potential under Climate Change," Energies, MDPI, vol. 14(11), pages 1-26, May.
    4. Chuenchum, Pavisorn & Xu, Mengzhen & Tang, Wenzhe, 2023. "Assessment of reservoir trapping efficiency and hydropower production under future projections of sedimentation in Lancang–Mekong River Basin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    5. Zhong, Ruida & Zhao, Tongtiegang & Chen, Xiaohong, 2021. "Evaluating the tradeoff between hydropower benefit and ecological interest under climate change: How will the water-energy-ecosystem nexus evolve in the upper Mekong basin?," Energy, Elsevier, vol. 237(C).
    6. Benson, Thomas & de Bie, Jasper & Gaskell, Jennifer & Vezza, Paolo & Kerr, James R. & Lumbroso, Darren & Owen, Markus R. & Kemp, Paul S., 2021. "Agent-based modelling of juvenile eel migration via selective tidal stream transport," Ecological Modelling, Elsevier, vol. 443(C).
    7. Dhaubanjar, Sanita & Lutz, Arthur F & Pradhananga, Saurav & Smolenaars, Wouter & Khanal, Sonu & Biemans, Hester & Nepal, Santosh & Ludwig, Fulco & Shrestha, Arun Bhakta & Immerzeel, Walter W, 2024. "From theoretical to sustainable potential for run-of-river hydropower development in the upper Indus basin," Applied Energy, Elsevier, vol. 357(C).
    8. Mariusz Sojka & Joanna Jaskuła, 2022. "Heavy Metals in River Sediments: Contamination, Toxicity, and Source Identification—A Case Study from Poland," IJERPH, MDPI, vol. 19(17), pages 1-25, August.
    9. Hershey, Henry J. & Wright, Russell R. & Swannack, Todd M. & DeVries, Dennis R., 2024. "Simulating fish passage impacts on a fragmented metapopulation of Paddlefish," Ecological Modelling, Elsevier, vol. 495(C).
    10. Qin, Pengcheng & Xu, Hongmei & Liu, Min & Xiao, Chan & Forrest, Kate E. & Samuelsen, Scott & Tarroja, Brian, 2020. "Assessing concurrent effects of climate change on hydropower supply, electricity demand, and greenhouse gas emissions in the Upper Yangtze River Basin of China," Applied Energy, Elsevier, vol. 279(C).
    11. Bin Liang & Guilin Han & Jie Zeng & Rui Qu & Man Liu & Jinke Liu, 2020. "Spatial Variation and Source of Dissolved Heavy Metals in the Lancangjiang River, Southwest China," IJERPH, MDPI, vol. 17(3), pages 1-15, January.
    12. Li, Mingxu & He, Nianpeng, 2022. "Carbon intensity of global existing and future hydropower reservoirs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    13. Kunhua Yang & Guilin Han & Jie Zeng & Bin Liang & Rui Qu & Jinke Liu & Man Liu, 2019. "Spatial Variation and Controlling Factors of H and O Isotopes in Lancang River Water, Southwest China," IJERPH, MDPI, vol. 16(24), pages 1-12, December.
    14. Schmolke, Amelie & Bartell, Steven M. & Roy, Colleen & Green, Nicholas & Galic, Nika & Brain, Richard, 2019. "Species-specific population dynamics and their link to an aquatic food web: A hybrid modeling approach," Ecological Modelling, Elsevier, vol. 405(C), pages 1-14.
    15. Li, Pengcheng & Yang, Yang & Zhang, Wenming & Cong, Nan & Yang, Ge & Yao, Weiwei, 2024. "Forebay entrainment risk effects on two fish species in the Williston Reservoir," Ecological Modelling, Elsevier, vol. 487(C).
    16. Grace C. Wu & Ranjit Deshmukh & Anne Trainor & Anagha Uppal & A. F. M. Kamal Chowdhury & Carlos Baez & Erik Martin & Jonathan Higgins & Ana Mileva & Kudakwashe Ndhlukula, 2024. "Avoiding ecosystem and social impacts of hydropower, wind, and solar in Southern Africa’s low-carbon electricity system," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Gao Zhu & Zuhao Zhou & Helge I Andersson, 2020. "Role of Transient Characteristics in Fish Trajectory Modeling," Sustainability, MDPI, vol. 12(17), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:483:y:2023:i:c:s0304380023001813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.