IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v470y2022ics0304380022001260.html
   My bibliography  Save this article

Self-healing time of population under dynamic disturbance

Author

Listed:
  • Liu, Sen
  • Han, Boyang
  • Li, Weide

Abstract

The stability of ecological system is inseparable from the self-healing ability of population. Therefore, exploring the self-healing of population after disturbance is of great significance to deeply understand the ecological stability. By constructing a pair approximation model, the special explicit dynamics of one population on disturbance is studied in this paper. In which, dynamic disturbance (which can be gradually restored) is used, and the self-healing time of the population is investigated. Through a mass of simulations, some interesting results are obtained. At a lower disturbance restoration rate, the population self-healing time will not be affected by the spatial correlation of disturbance, regardless of the dispersal mode of population and the existence of competition. Compared with local dispersal, global dispersal has more obvious advantages at medium disturbance restoration rate. The increase of disturbance restoration rate is not always conducive to the self-healing of population, and a higher disturbance restoration rate will increase the self-healing time. The results can give us some insights on ecological conservation.

Suggested Citation

  • Liu, Sen & Han, Boyang & Li, Weide, 2022. "Self-healing time of population under dynamic disturbance," Ecological Modelling, Elsevier, vol. 470(C).
  • Handle: RePEc:eee:ecomod:v:470:y:2022:i:c:s0304380022001260
    DOI: 10.1016/j.ecolmodel.2022.110015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380022001260
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.110015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liao, Jinbao & Li, Zhenqing & Hiebeler, David E. & El-Bana, Magdy & Deckmyn, Gaby & Nijs, Ivan, 2013. "Modelling plant population size and extinction thresholds from habitat loss and habitat fragmentation: Effects of neighbouring competition and dispersal strategy," Ecological Modelling, Elsevier, vol. 268(C), pages 9-17.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Min & Chen, Ge & Yang, Yuanqi, 2019. "Dynamics of host-parasite interactions with horizontal and vertical transmissions in spatially heterogeneous environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 452-458.
    2. Liao, Limei & Shen, Yang & Liao, Jinbao, 2020. "Robustness of dispersal network structure to patch loss," Ecological Modelling, Elsevier, vol. 424(C).
    3. Drielsma, Michael & Love, Jamie, 2021. "An equitable method for evaluating habitat amount and potential occupancy," Ecological Modelling, Elsevier, vol. 440(C).
    4. Gatmiry, Zohreh S. & Hafezalkotob, Ashkan & Khakzar bafruei, Morteza & Soltani, Roya, 2021. "Food web conservation vs. strategic threats: A security game approach," Ecological Modelling, Elsevier, vol. 442(C).
    5. Shen, Yang & Zeng, Chenghui & Nijs, Ivan & Liao, Jinbao, 2019. "Species persistence in spatially regular networks," Ecological Modelling, Elsevier, vol. 406(C), pages 1-6.
    6. Liu, Haoqi & Li, Weide & Lv, Guanghui, 2019. "How nonrandom habitat loss affects nature reserve planning strategies," Ecological Modelling, Elsevier, vol. 397(C), pages 39-46.
    7. Xu, Zhichao & Shen, Yang & Liao, Jinbao, 2018. "Patch dynamics of various plant-animal interactions in fragmented landscapes," Ecological Modelling, Elsevier, vol. 368(C), pages 27-32.
    8. Velazquez-Castro, Jorge & Eichhorn, Markus P., 2017. "Relative ranges of mating and dispersal modulate Allee thresholds in sessile species," Ecological Modelling, Elsevier, vol. 359(C), pages 269-275.
    9. Shen, Yang & Xu, Zhichao & Nijs, Ivan & Liao, Jinbao, 2018. "Spatial arrangement of size-different patches determines population dynamics in linear riverine systems," Ecological Modelling, Elsevier, vol. 385(C), pages 220-225.
    10. Ying, Zhixia & Ge, Gang & Liu, Yongjie, 2018. "The effects of clonal integration on the responses of plant species to habitat loss and habitat fragmentation," Ecological Modelling, Elsevier, vol. 384(C), pages 290-295.
    11. Clinton Stipek & Rolando Santos & Elizabeth Babcock & Diego Lirman, 2020. "Modelling the resilience of seagrass communities exposed to pulsed freshwater discharges: A seascape approach," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:470:y:2022:i:c:s0304380022001260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.