IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v468y2022ics0304380022000606.html
   My bibliography  Save this article

The impact of dynamic wind flow behavior on forest fire spread using cellular automata: Application to the watershed BOUKHALEF (Morocco)

Author

Listed:
  • Jellouli, Omar
  • Bernoussi, Abdes Samed

Abstract

Modeling the forest fire phenomena represents one of the most challenging and difficult problems, which need further investigations. Many research works have tackled this issue by developing simulation models in order to investigate the impact of climate change on fire spread behavior. In our previous work, a forest fire spread model has been introduced. The developed model takes into account some parameters that affect this phenomenon, such as topography, land use, nature and density of vegetation, humidity and wind by only considering uniform wind direction and speed. The work presented in this paper provides an improvement of this model for being integrated in real-sitting scenarios. In fact, a model of wind flow has been proposed. It is able to determine accurately the wind direction and speed according to the topography and land use. The proposed model was evaluated using dataset from a region in the north of Morocco, and results are reported to show the impact of the dynamic behavior of the wind on fire propagation.

Suggested Citation

  • Jellouli, Omar & Bernoussi, Abdes Samed, 2022. "The impact of dynamic wind flow behavior on forest fire spread using cellular automata: Application to the watershed BOUKHALEF (Morocco)," Ecological Modelling, Elsevier, vol. 468(C).
  • Handle: RePEc:eee:ecomod:v:468:y:2022:i:c:s0304380022000606
    DOI: 10.1016/j.ecolmodel.2022.109938
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380022000606
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.109938?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. O. Jellouli & A. Bernoussi & M. Mâatouk & M. Amharref, 2016. "Forest fire modelling using cellular automata: application to the watershed Oued Laou (Morocco)," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 22(5), pages 493-507, September.
    2. Mark A. Cochrane, 2003. "Fire science for rainforests," Nature, Nature, vol. 421(6926), pages 913-919, February.
    3. Klaus Lichtenegger & Wilhelm Schappacher, 2009. "Phase Transition In A Stochastic Forest Fire Model And Effects Of The Definition Of Neighborhood," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 20(08), pages 1247-1269.
    4. Ager, Alan A. & Barros, Ana M.G. & Houtman, Rachel & Seli, Rob & Day, Michelle A., 2020. "Modelling the effect of accelerated forest management on long-term wildfire activity," Ecological Modelling, Elsevier, vol. 421(C).
    5. Maciel, Everton A. & Martins, Valeria F. & de Paula, Mateus D. & Huth, Andreas & Guilherme, Frederico A.G. & Fischer, Rico & Giles, André & Barbosa, Reinaldo I. & Cavassan, Osmar & Martins, Fernando R, 2021. "Defaunation and changes in climate and fire frequency have synergistic effects on aboveground biomass loss in the brazilian savanna," Ecological Modelling, Elsevier, vol. 454(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carmenta, Rachel & Cammelli, Federico & Dressler, Wolfram & Verbicaro, Camila & Zaehringer, Julie G., 2021. "Between a rock and a hard place: The burdens of uncontrolled fire for smallholders across the tropics," World Development, Elsevier, vol. 145(C).
    2. Kezhen Liu & Lifu Shu & Cheng He, 2022. "Effects of Prescribed Fire on Meadow Soil Chemical Properties in Nanwenghe Nature Reserve," Sustainability, MDPI, vol. 14(16), pages 1-8, August.
    3. Tapas Ray & Dinesh Malasiya & Akshkumar Verma & Ekta Purswani & Asif Qureshi & Mohammed Latif Khan & Satyam Verma, 2023. "Characterization of Spatial–Temporal Distribution of Forest Fire in Chhattisgarh, India, Using MODIS-Based Active Fire Data," Sustainability, MDPI, vol. 15(9), pages 1-16, April.
    4. Van Butsic & Maggi Kelly & Max A. Moritz, 2015. "Land Use and Wildfire: A Review of Local Interactions and Teleconnections," Land, MDPI, vol. 4(1), pages 1-17, February.
    5. Lauk, Christian & Erb, Karl-Heinz, 2009. "Biomass consumed in anthropogenic vegetation fires: Global patterns and processes," Ecological Economics, Elsevier, vol. 69(2), pages 301-309, December.
    6. William Groot & Robert Field & Michael Brady & Orbita Roswintiarti & Maznorizan Mohamad, 2007. "Development of the Indonesian and Malaysian Fire Danger Rating Systems," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(1), pages 165-180, January.
    7. Sandra Lavorel & Mike Flannigan & Eric Lambin & Mary Scholes, 2007. "Vulnerability of land systems to fire: Interactions among humans, climate, the atmosphere, and ecosystems," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(1), pages 33-53, January.
    8. Schmerbeck, J. & Kohli, A. & Seeland, K., 2015. "Ecosystem services and forest fires in India — Context and policy implications from a case study in Andhra Pradesh," Forest Policy and Economics, Elsevier, vol. 50(C), pages 337-346.
    9. Thais Marcolino Ribeiro & Bruno Araujo Furtado Mendonça & José Francisco Oliveira-Júnior & Elpídio Inácio Fernandes-Filho, 2021. "Fire foci assessment in the Western Amazon (2000–2015)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 1485-1498, February.
    10. Zhangwen Su & Lujia Zheng & Sisheng Luo & Mulualem Tigabu & Futao Guo, 2021. "Modeling wildfire drivers in Chinese tropical forest ecosystems using global logistic regression and geographically weighted logistic regression," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1317-1345, August.
    11. Martín Senande-Rivera & Damián Insua-Costa & Gonzalo Miguez-Macho, 2022. "Spatial and temporal expansion of global wildland fire activity in response to climate change," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Mahlatse Kganyago & Lerato Shikwambana, 2019. "Assessing Spatio-Temporal Variability of Wildfires and their Impact on Sub-Saharan Ecosystems and Air Quality Using Multisource Remotely Sensed Data and Trend Analysis," Sustainability, MDPI, vol. 11(23), pages 1-24, November.
    13. Erik Lilleskov & Kevin McCullough & Kristell Hergoualc’h & Dennis Castillo Torres & Rodney Chimner & Daniel Murdiyarso & Randy Kolka & Laura Bourgeau-Chavez & John Hribljan & Jhon Aguila Pasquel & Cra, 2019. "Is Indonesian peatland loss a cautionary tale for Peru? A two-country comparison of the magnitude and causes of tropical peatland degradation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(4), pages 591-623, April.
    14. Liu, Shilei & Xu, Jintao, 2022. "Wildfire, protected areas and forest ownership: The case of China," Land Use Policy, Elsevier, vol. 122(C).
    15. Johanna Engström & Peyman Abbaszadeh & David Keellings & Proloy Deb & Hamid Moradkhani, 2022. "Wildfires in the Arctic and tropical biomes: what is the relative role of climate?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1901-1914, November.
    16. Andrea Colantoni & Gianluca Egidi & Giovanni Quaranta & Roberto D’Alessandro & Sabato Vinci & Rosario Turco & Luca Salvati, 2020. "Sustainable Land Management, Wildfire Risk and the Role of Grazing in Mediterranean Urban-Rural Interfaces: A Regional Approach from Greece," Land, MDPI, vol. 9(1), pages 1-16, January.
    17. Dislich, Claudia & Keyel, Alexander C. & Salecker, Jan & Kisel, Yael & Meyer, Katrin M. & Corre, Marife D. & Faust, Heiko & Hess, Bastian & Knohl, Alexander & Kreft, Holger & Meijide, Ana & Nurdiansya, 2015. "Ecosystem functions of oil palm plantations - a review," EFForTS Discussion Paper Series 16, University of Goettingen, Collaborative Research Centre 990 "EFForTS, Ecological and Socioeconomic Functions of Tropical Lowland Rainforest Transformation Systems (Sumatra, Indonesia)".
    18. Brendan Mackey & Cyril F. Kormos & Heather Keith & William R. Moomaw & Richard A. Houghton & Russell A. Mittermeier & David Hole & Sonia Hugh, 2020. "Understanding the importance of primary tropical forest protection as a mitigation strategy," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 763-787, May.
    19. Brendan Mackey & Cyril F. Kormos & Heather Keith & William R. Moomaw & Richard A. Houghton & Russell A. Mittermeier & David Hole & Sonia Hugh, 0. "Understanding the importance of primary tropical forest protection as a mitigation strategy," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 763-787.
    20. Derek Sheehan & Katrina Mullan & Thales A. P. West & Erin O. Semmens, 2024. "Protecting Life and Lung: Protected Areas Affect Fine Particulate Matter and Respiratory Hospitalizations in the Brazilian Amazon Biome," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(1), pages 45-87, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:468:y:2022:i:c:s0304380022000606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.