IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v450y2021ics0304380021001356.html
   My bibliography  Save this article

Effects of non-representative sampling design on multi-scale habitat models: flammulated owls in the Rocky Mountains

Author

Listed:
  • Chiaverini, Luca
  • Wan, Ho Yi
  • Hahn, Beth
  • Cilimburg, Amy
  • Wasserman, Tzeidle N.
  • Cushman, Samuel A.

Abstract

Sampling bias and autocorrelation can lead to erroneous estimates of habitat selection, model overfitting and elevated omission rates. We developed a multi-scale habitat suitability model of the flammulated owl (Psiloscops flammeolus) in the Northern Rocky Mountains based on extensive but spatially clustered survey data, and then used simulations to evaluate the effects of spatially non-representative and spatially representative sampling strategies on model performance and predictions. Our hypothesis was that models trained with spatially non-representative simulated datasets would suffer from bias in parameter estimates, and would show lower predictive performance. The models trained with the spatially representative simulated datasets greatly outperformed the models trained with the spatially non-representative simulated datasets judged on standard metrics of model performance. However, the spatially non-representative models produced superior predictions based on their ability to identify the correct spatial scales, covariates, signs and magnitudes of the species-environment relationships, when compared to the spatially representative models. Thus, it is likely that representative spatial sampling across a broad range of environmental gradients also resulted in over-dispersion of sampling data, with a higher proportion of samples falling in areas of low probability of presence, leading to lower ability to resolve the relationships between species presence-absence and environmental covariates. In contrast, the spatially non-representative sampling, by concentrating sampling along environmental gradients that are characterized by higher probability of presence of the modelled species, produced predictions that, while seeming to be weaker based on standard measures of model performance (e.g., AUC, Kappa, PCC), greatly outperformed the spatially representative models based on measures of true model prediction (e.g., correctly describing the actual spatial scales, direction and strength of species-environment relationships). Further work using simulation approaches is warranted to more fully evaluate the ability of species distribution modelling techniques to correctly identify scales, driving covariates, signs and magnitudes of relationships between species presence-absence patterns, and environmental covariates.

Suggested Citation

  • Chiaverini, Luca & Wan, Ho Yi & Hahn, Beth & Cilimburg, Amy & Wasserman, Tzeidle N. & Cushman, Samuel A., 2021. "Effects of non-representative sampling design on multi-scale habitat models: flammulated owls in the Rocky Mountains," Ecological Modelling, Elsevier, vol. 450(C).
  • Handle: RePEc:eee:ecomod:v:450:y:2021:i:c:s0304380021001356
    DOI: 10.1016/j.ecolmodel.2021.109566
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380021001356
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2021.109566?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bivand, Roger & Piras, Gianfranco, 2015. "Comparing Implementations of Estimation Methods for Spatial Econometrics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i18).
    2. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    3. Pliscoff, Patricio & Luebert, Federico & Hilger, Hartmut H. & Guisan, Antoine, 2014. "Effects of alternative sets of climatic predictors on species distribution models and associated estimates of extinction risk: A test with plants in an arid environment," Ecological Modelling, Elsevier, vol. 288(C), pages 166-177.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lawani, Abdelaziz & Reed, Michael R. & Mark, Tyler & Zheng, Yuqing, 2019. "Reviews and price on online platforms: Evidence from sentiment analysis of Airbnb reviews in Boston," Regional Science and Urban Economics, Elsevier, vol. 75(C), pages 22-34.
    2. JANSSENS, Jochen & DE CORTE, Annelies & SÖRENSEN, Kenneth, 2016. "Water distribution network design optimisation with respect to reliability," Working Papers 2016007, University of Antwerp, Faculty of Business and Economics.
    3. Raymond Hernandez & Elizabeth A. Pyatak & Cheryl L. P. Vigen & Haomiao Jin & Stefan Schneider & Donna Spruijt-Metz & Shawn C. Roll, 2021. "Understanding Worker Well-Being Relative to High-Workload and Recovery Activities across a Whole Day: Pilot Testing an Ecological Momentary Assessment Technique," IJERPH, MDPI, vol. 18(19), pages 1-17, October.
    4. Christopher Hassall & Michael Nisbet & Evan Norcliffe & He Wang, 2024. "The Potential Health Benefits of Urban Tree Planting Suggested through Immersive Environments," Land, MDPI, vol. 13(3), pages 1-12, February.
    5. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Elisabeth Beckmann & Lukas Olbrich & Joseph Sakshaug, 2024. "Multivariate assessment of interviewer-related errors in a cross-national economic survey (Lukas Olbrich, Elisabeth Beckmann, Joseph W. Sakshaug)," Working Papers 253, Oesterreichische Nationalbank (Austrian Central Bank).
    7. Guohuan Su & Adam Mertel & Sébastien Brosse & Justin M. Calabrese, 2023. "Species invasiveness and community invasibility of North American freshwater fish fauna revealed via trait-based analysis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. F J Heather & D Z Childs & A M Darnaude & J L Blanchard, 2018. "Using an integral projection model to assess the effect of temperature on the growth of gilthead seabream Sparus aurata," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-19, May.
    9. Valentina Krenz & Arjen Alink & Tobias Sommer & Benno Roozendaal & Lars Schwabe, 2023. "Time-dependent memory transformation in hippocampus and neocortex is semantic in nature," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Morán-Ordóñez, Alejandra & Ameztegui, Aitor & De Cáceres, Miquel & de-Miguel, Sergio & Lefèvre, François & Brotons, Lluís & Coll, Lluís, 2020. "Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios," Ecosystem Services, Elsevier, vol. 45(C).
    11. Jack McDonnell & Thomas McKenna & Kathryn A. Yurkonis & Deirdre Hennessy & Rafael Andrade Moral & Caroline Brophy, 2023. "A Mixed Model for Assessing the Effect of Numerous Plant Species Interactions on Grassland Biodiversity and Ecosystem Function Relationships," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 1-19, March.
    12. Ana Pinto & Tong Yin & Marion Reichenbach & Raghavendra Bhatta & Pradeep Kumar Malik & Eva Schlecht & Sven König, 2020. "Enteric Methane Emissions of Dairy Cattle Considering Breed Composition, Pasture Management, Housing Conditions and Feeding Characteristics along a Rural-Urban Gradient in a Rising Megacity," Agriculture, MDPI, vol. 10(12), pages 1-18, December.
    13. Damian M. Herz & Manuel Bange & Gabriel Gonzalez-Escamilla & Miriam Auer & Keyoumars Ashkan & Petra Fischer & Huiling Tan & Rafal Bogacz & Muthuraman Muthuraman & Sergiu Groppa & Peter Brown, 2022. "Dynamic control of decision and movement speed in the human basal ganglia," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Kathrin Stenchly & Marc Victor Hansen & Katharina Stein & Andreas Buerkert & Wilhelm Loewenstein, 2018. "Income Vulnerability of West African Farming Households to Losses in Pollination Services: A Case Study from Ouagadougou, Burkina Faso," Sustainability, MDPI, vol. 10(11), pages 1-12, November.
    15. Dongyan Liu & Chongran Zhou & John K. Keesing & Oscar Serrano & Axel Werner & Yin Fang & Yingjun Chen & Pere Masque & Janine Kinloch & Aleksey Sadekov & Yan Du, 2022. "Wildfires enhance phytoplankton production in tropical oceans," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Zhaogeng Yang & Yanhui Li & Peijin Hu & Jun Ma & Yi Song, 2020. "Prevalence of Anemia and its Associated Factors among Chinese 9-, 12-, and 14-Year-Old Children: Results from 2014 Chinese National Survey on Students Constitution and Health," IJERPH, MDPI, vol. 17(5), pages 1-10, February.
    17. Marco Lopez-Cruz & Fernando M. Aguate & Jacob D. Washburn & Natalia Leon & Shawn M. Kaeppler & Dayane Cristina Lima & Ruijuan Tan & Addie Thompson & Laurence Willard Bretonne & Gustavo los Campos, 2023. "Leveraging data from the Genomes-to-Fields Initiative to investigate genotype-by-environment interactions in maize in North America," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    18. Baumann, Elias & Kern, Jana & Lessmann, Stefan, 2019. "Usage Continuance in Software-as-a-Service," IRTG 1792 Discussion Papers 2019-005, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    19. Alexandra M. Cheney & Stephanann M. Costello & Nicholas V. Pinkham & Annie Waldum & Susan C. Broadaway & Maria Cotrina-Vidal & Marc Mergy & Brian Tripet & Douglas J. Kominsky & Heather M. Grifka-Walk , 2023. "Gut microbiome dysbiosis drives metabolic dysfunction in Familial dysautonomia," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. repec:cup:judgdm:v:16:y:2021:i:1:p:201-237 is not listed on IDEAS
    21. C. Gabriel Hidalgo Pizango & Eurídice N. Honorio Coronado & Jhon del Águila-Pasquel & Gerardo Flores Llampazo & Johan de Jong & César J. Córdova Oroche & José M. Reyna Huaymacari & Steve J. Carver & D, 2022. "Sustainable palm fruit harvesting as a pathway to conserve Amazon peatland forests," Nature Sustainability, Nature, vol. 5(6), pages 479-487, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:450:y:2021:i:c:s0304380021001356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.