Factors controlling long-term carbon dioxide exchange between a Douglas-fir stand and the atmosphere identified using an artificial neural network approach
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ecolmodel.2020.109266
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wen, Xuding & Zhao, Zhonghui & Deng, Xiangwen & Xiang, Wenhua & Tian, Dalun & Yan, Wende & Zhou, Xiaolu & Peng, Changhui, 2014. "Applying an artificial neural network to simulate and predict Chinese fir (Cunninghamia lanceolata) plantation carbon flux in subtropical China," Ecological Modelling, Elsevier, vol. 294(C), pages 19-26.
- Taweh Beysolow II, 2017. "Introduction to Deep Learning Using R," Springer Books, Springer, number 978-1-4842-2734-3, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cai, Jianchao & Xu, Kai & Zhu, Yanhui & Hu, Fang & Li, Liuhuan, 2020. "Prediction and analysis of net ecosystem carbon exchange based on gradient boosting regression and random forest," Applied Energy, Elsevier, vol. 262(C).
- Humberto Elias Garcia Lopes & Marlusa de Sevilha Gosling, 2021. "Cluster Analysis in Practice: Dealing with Outliers in Managerial Research," RAC - Revista de Administração Contemporânea (Journal of Contemporary Administration), ANPAD - Associação Nacional de Pós-Graduação e Pesquisa em Administração, vol. 25(1), pages 200081-2000.
- Wan, Heyang & Qi, Hongwei & Shang, Songhao, 2023. "Estimating soil water and salt contents from field measurements with time domain reflectometry using machine learning algorithms," Agricultural Water Management, Elsevier, vol. 285(C).
- Silva, Gabriela Cristina Costa & Neves, Júlio César Lima & Marcatti, Gustavo Eduardo & Soares, Carlos Pedro Boechat & Calegario, Natalino & Júnior, Carlos Alberto Araújo & Gonzáles, Duberlí Geomar Ele, 2023. "Improving 3-PG calibration and parameterization using artificial neural networks," Ecological Modelling, Elsevier, vol. 479(C).
More about this item
Keywords
Artificial neural network; Net ecosystem exchange partitioning; Eddy covariance; Douglas-fir; El niño; Predictor analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:435:y:2020:i:c:s0304380020303367. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.