IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v409y2019ic9.html
   My bibliography  Save this article

Ecological networks simulation by fuzzy ecotoxicological rules

Author

Listed:
  • Pereira, G.C.
  • Andrade, L.P.
  • Espíndola, R.P.
  • Ebecken, N.F.F.

Abstract

This paper emphasizes the integration of ecology and ecotoxicology. The main objective is to present the development of an early warning tool for environmental risk assessment. First, a reference ecological network of a plankton community was built from in situ flow cytometry data. Next, a set of fuzzy ecotoxicological rules to explain impacts from three pollutants were constructed from the scientific literature and expert knowledge. These rules were applied to the plankton network to simulate disturbance and produce an impacted network. Network indices were used to assess the consequences of this simulated disturbance, and a regime shift in the planktonic system was noted. Coastal zone ecosystem managers could use this type of model to anticipate early warnings in disturbance scenarios, allowing estimates of possible impacts to the marine ecosystem.

Suggested Citation

  • Pereira, G.C. & Andrade, L.P. & Espíndola, R.P. & Ebecken, N.F.F., 2019. "Ecological networks simulation by fuzzy ecotoxicological rules," Ecological Modelling, Elsevier, vol. 409(C), pages 1-1.
  • Handle: RePEc:eee:ecomod:v:409:y:2019:i:c:9
    DOI: 10.1016/j.ecolmodel.2019.108733
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380019302339
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2019.108733?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fath, Brian D. & Scharler, Ursula M. & Baird, Dan, 2013. "Dependence of network metrics on model aggregation and throughflow calculations: Demonstration using the Sylt–Rømø Bight Ecosystem," Ecological Modelling, Elsevier, vol. 252(C), pages 214-219.
    2. Kones, Julius K. & Soetaert, Karline & van Oevelen, Dick & Owino, John O., 2009. "Are network indices robust indicators of food web functioning? A Monte Carlo approach," Ecological Modelling, Elsevier, vol. 220(3), pages 370-382.
    3. de Andrade, Lúcio Pereira & Espíndola, Rogério Pinto & Pereira, Gilberto Carvalho & Ebecken, Nelson Francisco Favilla, 2016. "Fuzzy modeling of plankton networks," Ecological Modelling, Elsevier, vol. 337(C), pages 149-155.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olusoji, Oluwafemi D. & Spaak, Jurg W. & Holmes, Mark & Neyens, Thomas & Aerts, Marc & De Laender, Frederik, 2021. "cyanoFilter: An R package to identify phytoplankton populations from flow cytometry data using cell pigmentation and granularity," Ecological Modelling, Elsevier, vol. 460(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    2. Brunnermeier, M. & Clerc, L. & Scheicher, M., 2013. "Assessing contagion risks in the CDS market," Financial Stability Review, Banque de France, issue 17, pages 123-134, April.
    3. Brigolin, D. & Savenkoff, C. & Zucchetta, M. & Pranovi, F. & Franzoi, P. & Torricelli, P. & Pastres, R., 2011. "An inverse model for the analysis of the Venice lagoon food web," Ecological Modelling, Elsevier, vol. 222(14), pages 2404-2413.
    4. Taffi, Marianna & Paoletti, Nicola & Liò, Pietro & Pucciarelli, Sandra & Marini, Mauro, 2015. "Bioaccumulation modelling and sensitivity analysis for discovering key players in contaminated food webs: The case study of PCBs in the Adriatic Sea," Ecological Modelling, Elsevier, vol. 306(C), pages 205-215.
    5. Upadhyay, Shashankaditya & Roy, Arijit & Ramprakash, M. & Idiculla, Jobin & Kumar, A. Senthil & Bhattacharya, Sudeepto, 2017. "A network theoretic study of ecological connectivity in Western Himalayas," Ecological Modelling, Elsevier, vol. 359(C), pages 246-257.
    6. Guesnet, Vanessa & Lassalle, Géraldine & Chaalali, Aurélie & Kearney, Kelly & Saint-Béat, Blanche & Karimi, Battle & Grami, Boutheina & Tecchio, Samuele & Niquil, Nathalie & Lobry, Jérémy, 2015. "Incorporating food-web parameter uncertainty into Ecopath-derived ecological network indicators," Ecological Modelling, Elsevier, vol. 313(C), pages 29-40.
    7. Ju, Yiyi & Fujikawa, Kiyoshi, 2019. "Modeling the cost transmission mechanism of the emission trading scheme in China," Applied Energy, Elsevier, vol. 236(C), pages 172-182.
    8. Borrett, Stuart R. & Moody, James & Edelmann, Achim, 2014. "The rise of Network Ecology: Maps of the topic diversity and scientific collaboration," Ecological Modelling, Elsevier, vol. 293(C), pages 111-127.
    9. Mateusz Iskrzyński & Freek Janssen & Francesco Picciolo & Brian Fath & Franco Ruzzenenti, 2022. "Cycling and reciprocity in weighted food webs and economic networks," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 838-849, June.
    10. Salas, Andria K. & Borrett, Stuart R., 2011. "Evidence for the dominance of indirect effects in 50 trophic ecosystem networks," Ecological Modelling, Elsevier, vol. 222(5), pages 1192-1204.
    11. Schaubroeck, Thomas & Staelens, Jeroen & Verheyen, Kris & Muys, Bart & Dewulf, Jo, 2012. "Improved ecological network analysis for environmental sustainability assessment; a case study on a forest ecosystem," Ecological Modelling, Elsevier, vol. 247(C), pages 144-156.
    12. Mukherjee, Joyita & Scharler, Ursula M. & Fath, Brian D. & Ray, Santanu, 2015. "Measuring sensitivity of robustness and network indices for an estuarine food web model under perturbations," Ecological Modelling, Elsevier, vol. 306(C), pages 160-173.
    13. Chen, Shaoqing & Chen, Bin, 2016. "Urban energy–water nexus: A network perspective," Applied Energy, Elsevier, vol. 184(C), pages 905-914.
    14. Daniel Schubert & Alexander Brand, 2022. "“Whom Should I Talk To?”: Role Prescription and Hierarchy Building in Supervised Living Groups," Social Inclusion, Cogitatio Press, vol. 10(3), pages 295-306.
    15. Ju, Yiyi, 2019. "Revealing the bilateral dependencies and policy implication of food production of Japan and China: From the perspective of Food-Energy-Water nexus," Ecological Modelling, Elsevier, vol. 391(C), pages 29-39.
    16. Yang, Tianxiang & Jing, Dong & Wang, Shoubing, 2015. "Applying and exploring a new modeling approach of functional connectivity regarding ecological network: A case study on the dynamic lines of space syntax," Ecological Modelling, Elsevier, vol. 318(C), pages 126-137.
    17. Hosack, Geoffrey R. & Eldridge, Peter M., 2009. "Do microbial processes regulate the stability of a coral atoll's enclosed pelagic ecosystem?," Ecological Modelling, Elsevier, vol. 220(20), pages 2665-2682.
    18. Clerc, L. & Gabrieli, S. & Kern, S. & El Omari, Y., 2014. "Monitoring the European CDS Market through Networks: Implications for Contagion Risks," Working papers 477, Banque de France.
    19. Pacella, Stephen R. & Lebreton, Benoit & Richard, Pierre & Phillips, Donald & DeWitt, Theodore H. & Niquil, Nathalie, 2013. "Incorporation of diet information derived from Bayesian stable isotope mixing models into mass-balanced marine ecosystem models: A case study from the Marennes-Oléron Estuary, France," Ecological Modelling, Elsevier, vol. 267(C), pages 127-137.
    20. Saint-Béat, B. & Vézina, A.F. & Asmus, R. & Asmus, H. & Niquil, N., 2013. "The mean function provides robustness to linear inverse modelling flow estimation in food webs: A comparison of functions derived from statistics and ecological theories," Ecological Modelling, Elsevier, vol. 258(C), pages 53-64.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:409:y:2019:i:c:9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.