IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v393y2019icp66-75.html
   My bibliography  Save this article

Macquarie Island’s northern giant petrels and the impacts of pest eradication on population abundance

Author

Listed:
  • Alderman, R.
  • Tuck, G.N.
  • Castillo-Jordán, C.
  • Haddon, M.
  • Punt, A.E.

Abstract

Pest eradication conducted over the years 2010 to 2014 at Macquarie Island successfully eradicated introduced rabbits, rats and mice from this sub-Antarctic island. The initial aerial baiting phase in the winters of 2010 and 2011 resulted in significant mortality of several native seabird species through primary and secondary ingestion of brodifacoum bait. A species of key concern is the northern giant petrel (Macronectes halli), which, although relatively abundant and increasing on Macquarie Island, is listed as threatened under Australian legislation and was one of the species most affected by poisoning. We use a Bayesian approach to estimate the total mortality and the response of the population to the poisoning event over the short- to medium-term. We then considered how population abundance might respond over the ensuing years. Projections of population trajectories suggest a greater than 50% probability of recovery to the pre‐poisoning levels of 2009 breeding pairs by 2017. This modelling approach could be applied to future planned eradications to quantify the mortality and recovery of incidentally affected populations.

Suggested Citation

  • Alderman, R. & Tuck, G.N. & Castillo-Jordán, C. & Haddon, M. & Punt, A.E., 2019. "Macquarie Island’s northern giant petrels and the impacts of pest eradication on population abundance," Ecological Modelling, Elsevier, vol. 393(C), pages 66-75.
  • Handle: RePEc:eee:ecomod:v:393:y:2019:i:c:p:66-75
    DOI: 10.1016/j.ecolmodel.2018.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380018303727
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.11.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nash, John C. & Varadhan, Ravi, 2011. "Unifying Optimization Algorithms to Aid Software System Users: optimx for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 43(i09).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Inoue, Naoto K., 2022. "Quantitative evaluation of the effects of bycatch on native species using mathematical models," Ecological Modelling, Elsevier, vol. 474(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hancock, Joana & Vieira, Sara & Lima, Hipólito & Schmitt, Vanessa & Pereira, Jaconias & Rebelo, Rui & Girondot, Marc, 2019. "Overcoming field monitoring restraints in estimating marine turtle internesting period by modelling individual nesting behaviour using capture-mark-recapture data," Ecological Modelling, Elsevier, vol. 402(C), pages 76-84.
    2. Jack McDonnell & Thomas McKenna & Kathryn A. Yurkonis & Deirdre Hennessy & Rafael Andrade Moral & Caroline Brophy, 2023. "A Mixed Model for Assessing the Effect of Numerous Plant Species Interactions on Grassland Biodiversity and Ecosystem Function Relationships," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 1-19, March.
    3. Arzum Akkaş & Nachiketa Sahoo, 2020. "Reducing Product Expiration by Aligning Salesforce Incentives: A Data‐driven Approach," Production and Operations Management, Production and Operations Management Society, vol. 29(8), pages 1992-2009, August.
    4. Zong, Weiyan & Zhang, Junyi & Yang, Xiaoguang, 2023. "Building a life-course intertemporal discrete choice model to analyze migration biographies," Journal of choice modelling, Elsevier, vol. 47(C).
    5. Fatima-Zahra Jaouimaa & Daniel Dempsey & Suzanne Van Osch & Stephen Kinsella & Kevin Burke & Jason Wyse & James Sweeney, 2021. "An age-structured SEIR model for COVID-19 incidence in Dublin, Ireland with framework for evaluating health intervention cost," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-25, December.
    6. Bivand, Roger & Piras, Gianfranco, 2015. "Comparing Implementations of Estimation Methods for Spatial Econometrics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i18).
    7. Fritsch, Markus & Pua, Andrew Adrian Yu & Schnurbus, Joachim, 2019. "Pdynmc - An R-package for estimating linear dynamic panel data models based on linear and nonlinear moment conditions," Passauer Diskussionspapiere, Betriebswirtschaftliche Reihe B-39-19, University of Passau, Faculty of Business and Economics.
    8. repec:rri:wpaper:201301 is not listed on IDEAS
    9. Gong Chen & Hartmut Fricke & Ostap Okhrin & Judith Rosenow, 2022. "Importance of Weather Conditions in a Flight Corridor," Stats, MDPI, vol. 5(1), pages 1-27, March.
    10. Sameh Abdulah & Yuxiao Li & Jian Cao & Hatem Ltaief & David E. Keyes & Marc G. Genton & Ying Sun, 2023. "Large‐scale environmental data science with ExaGeoStatR," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    11. Stavrakoudis, Athanassios & Panagiotou, Dimitrios, 2016. "Price dependence and asymmetric responses between coffee varieties," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 17(2), June.
    12. Michal Engelman & Christopher L. Seplaki & Ravi Varadhan, 2017. "A Quiescent Phase in Human Mortality? Exploring the Ages of Least Vulnerability," Demography, Springer;Population Association of America (PAA), vol. 54(3), pages 1097-1118, June.
    13. Baty, Florent & Ritz, Christian & Charles, Sandrine & Brutsche, Martin & Flandrois, Jean-Pierre & Delignette-Muller, Marie-Laure, 2015. "A Toolbox for Nonlinear Regression in R: The Package nlstools," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 66(i05).
    14. Herrera, Rodrigo & Schipp, Bernhard, 2014. "Statistics of extreme events in risk management: The impact of the subprime and global financial crisis on the German stock market," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 218-238.
    15. Ghysels, Eric & Kvedaras, Virmantas & Zemlys, Vaidotas, 2016. "Mixed Frequency Data Sampling Regression Models: The R Package midasr," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 72(i04).
    16. Faustino Prieto & José María Sarabia & Enrique Calderín-Ojeda, 2021. "The nonlinear distribution of employment across municipalities," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(2), pages 287-307, April.
    17. Nima Khalighinejad & Neil Garrett & Luke Priestley & Patricia Lockwood & Matthew F. S. Rushworth, 2021. "A habenula-insular circuit encodes the willingness to act," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    18. Anna Gloria Billé & Marco Rogna, 2022. "The effect of weather conditions on fertilizer applications: A spatial dynamic panel data analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 3-36, January.
    19. Braun, Michael, 2014. "trustOptim: An R Package for Trust Region Optimization with Sparse Hessians," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 60(i04).
    20. Michal Engelman & Hal Caswell & Emily Agree, 2014. "Why do lifespan variability trends for the young and old diverge? A perturbation analysis," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 30(48), pages 1367-1396.
    21. Noe Wiener, 2018. "Measuring Labor Market Segmentation from Incomplete Data," UMASS Amherst Economics Working Papers 2018-01, University of Massachusetts Amherst, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:393:y:2019:i:c:p:66-75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.