IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v385y2018icp165-172.html
   My bibliography  Save this article

Quantifying the benefits of spatial fisheries management – An ecological-economic optimization approach

Author

Listed:
  • Voss, Rudi
  • Quaas, Martin F.
  • Schmidt, Jörn O.
  • Stoeven, Max T.
  • Francis, Tessa B.
  • Levin, Phillip S.
  • Armitage, Derek R.
  • Cleary, Jaclyn S.
  • Jones, R. Russ
  • Lee, Lynn C.
  • Okamoto, Daniel K.
  • Silver, Jennifer J.
  • Thornton, Thomas F.
  • Dressel, Sherri C.
  • MacCall, Alec D.
  • Punt, André E.

Abstract

Improving fisheries management is a key challenge in addressing the United Nations Sustainable Development Goal 2 (Zero Hunger) and support Goals 1 (No Poverty) and 14 (Life Below Water). However, sustaining the ocean’s living resources has important dimensions beyond food security, such as cultural values, which might be of equal importance in some settings. Fisheries management faces special challenges when there is a mismatch between biological units and management units, e.g., when ecological spatial structures are not reflected in how catch limits are set. This might result in overexploitation and even the loss of sub-stocks. We use a spatially structured ecological-economic model parameterized for a pelagic schooling fish to examine how the benefits of implementing spatially differentiated fisheries management depend on biological parameters. We focus on a subset of socio-ecological variables, i.e., fisheries yield, present value of economic surplus, and loss of spawning sites (which might be linked to loss of cultural values) to demonstrate that, in theory, ideally differentiated spatial management can be implemented without exact information about recruitment behavior. For imperfectly differentiated spatial management, however, knowledge about recruitment behavior becomes key to avoiding economic losses and to sustaining stock structure, especially when there is large spatial heterogeneity in biological parameters. Knowledge about variability in site-specific productivity determines the expectation of achievable sustainable harvest levels. Further research on such ecological issues is therefore warranted, both for ecological as well as economic reasons.

Suggested Citation

  • Voss, Rudi & Quaas, Martin F. & Schmidt, Jörn O. & Stoeven, Max T. & Francis, Tessa B. & Levin, Phillip S. & Armitage, Derek R. & Cleary, Jaclyn S. & Jones, R. Russ & Lee, Lynn C. & Okamoto, Daniel K., 2018. "Quantifying the benefits of spatial fisheries management – An ecological-economic optimization approach," Ecological Modelling, Elsevier, vol. 385(C), pages 165-172.
  • Handle: RePEc:eee:ecomod:v:385:y:2018:i:c:p:165-172
    DOI: 10.1016/j.ecolmodel.2018.07.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380018302473
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.07.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ute Kapaun & Martin Quaas, 2013. "Does the Optimal Size of a Fish Stock Increase with Environmental Uncertainties?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(2), pages 293-310, February.
    2. Olli Tahvonen & Martin Quaas & Jörn Schmidt & Rudi Voss, 2013. "Optimal Harvesting of an Age-Structured Schooling Fishery," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(1), pages 21-39, January.
    3. Armstrong, Claire W. & Skonhoft, Anders, 2006. "Marine reserves: A bio-economic model with asymmetric density dependent migration," Ecological Economics, Elsevier, vol. 57(3), pages 466-476, May.
    4. Bulte, Erwin H. & van Kooten, G. Cornelis, 1999. "Metapopulation dynamics and stochastic bioeconomic modeling," Ecological Economics, Elsevier, vol. 30(2), pages 293-299, August.
    5. United Nations UN, 2015. "Transforming our World: the 2030 Agenda for Sustainable Development," Working Papers id:7559, eSocialSciences.
    6. Sanchirico, James N. & Wilen, James E., 2001. "A Bioeconomic Model of Marine Reserve Creation," Journal of Environmental Economics and Management, Elsevier, vol. 42(3), pages 257-276, November.
    7. Costello, Christopher & Polasky, Stephen, 2008. "Optimal harvesting of stochastic spatial resources," Journal of Environmental Economics and Management, Elsevier, vol. 56(1), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yamazaki, Satoshi & Jennings, Sarah & Quentin Grafton, R. & Kompas, Tom, 2015. "Are marine reserves and harvest control rules substitutes or complements for rebuilding fisheries?," Resource and Energy Economics, Elsevier, vol. 40(C), pages 1-18.
    2. Michael Finus & Raoul Schneider & Pedro Pintassilgo, 2019. "The Role of Social and Technical Excludability for the Success of Impure Public Good and Common Pool Agreements: The Case of International Fisheries," Graz Economics Papers 2019-12, University of Graz, Department of Economics.
    3. Finus, Michael & Schneider, Raoul & Pintassilgo, Pedro, 2020. "The role of social and technical excludability for the success of impure public good and common pool agreements," Resource and Energy Economics, Elsevier, vol. 59(C).
    4. Renato Rosa & João Vaz & Rui Mota & Alexandra Silva, 2018. "Preference for Landings’ Smoothing and Risk of Collapse in Optimal Fishery Policies: The Ibero-Atlantic Sardine Fishery," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(4), pages 875-895, December.
    5. Christopher Costello & Daniel T. Kaffine, 2010. "Marine protected areas in spatial property-rights fisheries ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(3), pages 321-341, July.
    6. Christopher Costello & Nicolas Querou & Agnès Tomini, 2014. "Spatial concessions with limited tenure," Post-Print hal-01123392, HAL.
    7. Martin F. Quaas & Max T. Stoeven & Bernd Klauer & Thomas Petersen & Johannes Schiller, 2018. "Windows of Opportunity for Sustainable Fisheries Management: The Case of Eastern Baltic Cod," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(2), pages 323-341, June.
    8. W. A. Brock & A. Xepapadeas, 2015. "Modeling Coupled Climate, Ecosystems, and Economic Systems," Working Papers 2015.66, Fondazione Eni Enrico Mattei.
    9. Costello, Christopher & Quérou, Nicolas & Tomini, Agnes, 2015. "Partial enclosure of the commons," Journal of Public Economics, Elsevier, vol. 121(C), pages 69-78.
    10. Kelsall, Claudia & Quaas, Martin F. & Quérou, Nicolas, 2023. "Risk aversion in renewable resource harvesting," Journal of Environmental Economics and Management, Elsevier, vol. 121(C).
    11. Anders Skonhoft & Wenting Chen, 2011. "On the management of interconnected wildlife populations," Working Paper Series 12311, Department of Economics, Norwegian University of Science and Technology.
    12. Quérou, Nicolas & Tomini, Agnes & Costello, Christopher, 2022. "Limited‐tenure concessions for collective goods," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    13. Jules Selles, 2018. "Fisheries management: what uncertainties matter?," Working Papers hal-01824238, HAL.
    14. Anastasios Xepapadeas, 2012. "Diffusion and Spatial Aspects," DEOS Working Papers 1232, Athens University of Economics and Business.
    15. Greenville, Jared W. & MacAulay, T. Gordon, 2004. "A bioeconomic model of a marine park," 2004 Conference (48th), February 11-13, 2004, Melbourne, Australia 58451, Australian Agricultural and Resource Economics Society.
    16. Brock, William & Xepapadeas, Anastasios, 2010. "Pattern formation, spatial externalities and regulation in coupled economic-ecological systems," Journal of Environmental Economics and Management, Elsevier, vol. 59(2), pages 149-164, March.
    17. Christopher Costello & Daniel Kaffine, 2018. "Natural Resource Federalism: Preferences Versus Connectivity for Patchy Resources," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 99-126, September.
    18. Armstrong, Claire W., 2007. "A note on the ecological-economic modelling of marine reserves in fisheries," Ecological Economics, Elsevier, vol. 62(2), pages 242-250, April.
    19. Greenville, Jared W. & MacAulay, T. Gordon, 2006. "Protected areas in fisheries: a two-patch, two-species model," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(2), pages 1-20, June.
    20. Nkuiya, Bruno & Diekert, Florian, 2023. "Stochastic growth and regime shift risk in renewable resource management," Ecological Economics, Elsevier, vol. 208(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:385:y:2018:i:c:p:165-172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.