IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v380y2018icp40-52.html
   My bibliography  Save this article

Modelling tool for predicting and simulating nitrogen concentrations in cold-climate mining ponds

Author

Listed:
  • Nilsson, Lino
  • Widerlund, Anders

Abstract

A nitrogen model was developed with the aim to trace nitrogen cycling in a cold climate-mining pond at the Aitik copper mine in northern Sweden. The model contains 10 state variables and 19 nitrogen cycling reactions. The model also includes sediment and physical properties of the pond, such as evaporation, freezing and thawing. The model was written in Mathworks MATLAB and was calibrated and validated using environmental monitoring data for the clarification pond at the Aitik mine. The data used comprised monthly values of nitrogen speciation, phosphorous and water flow. The model accurately predicts ammonium (r2 = 0.84) and nitrate (r2 = 0.82) concentrations in a time series from February 2012–August 2014. The model did not accurately predict nitrate concentrations (r2 = 0.11), presumably due to high oxygen concentration in the pond water that prevented denitrification in the water column. The transport of organic material to the sediment was also limiting denitrification in the sediment. When allowing denitrification in the water column as well as increasing the rate of transport of organic material to the sediment the nitrate prediction capacity increased to a satisfactory level (r2 = 0.54). A sensitivity analysis for the system showed that the most sensitive reactions for the water column were oxic mineralisation as well as the nitrification rate.

Suggested Citation

  • Nilsson, Lino & Widerlund, Anders, 2018. "Modelling tool for predicting and simulating nitrogen concentrations in cold-climate mining ponds," Ecological Modelling, Elsevier, vol. 380(C), pages 40-52.
  • Handle: RePEc:eee:ecomod:v:380:y:2018:i:c:p:40-52
    DOI: 10.1016/j.ecolmodel.2018.04.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380018301236
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.04.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cariboni, J. & Gatelli, D. & Liska, R. & Saltelli, A., 2007. "The role of sensitivity analysis in ecological modelling," Ecological Modelling, Elsevier, vol. 203(1), pages 167-182.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco A. Buendia-Hernandez & Maria J. Ortiz Bevia & Francisco J. Alvarez-Garcia & Antonio Ruizde Elvira, 2022. "Sensitivity of a Dynamic Model of Air Traffic Emissions to Technological and Environmental Factors," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    2. Imron, Muhammad Ali & Gergs, Andre & Berger, Uta, 2012. "Structure and sensitivity analysis of individual-based predator–prey models," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 71-81.
    3. Pelletier, Dominique & Mahevas, Stéphanie & Drouineau, Hilaire & Vermard, Youen & Thebaud, Olivier & Guyader, Olivier & Poussin, Benjamin, 2009. "Evaluation of the bioeconomic sustainability of multi-species multi-fleet fisheries under a wide range of policy options using ISIS-Fish," Ecological Modelling, Elsevier, vol. 220(7), pages 1013-1033.
    4. Frank H. Koch & Denys Yemshanov & Daniel W. McKenney & William D. Smith, 2009. "Evaluating Critical Uncertainty Thresholds in a Spatial Model of Forest Pest Invasion Risk," Risk Analysis, John Wiley & Sons, vol. 29(9), pages 1227-1241, September.
    5. Lorscheid, Iris & Meyer, Matthias, 2016. "Divide and conquer: Configuring submodels for valid and efficient analyses of complex simulation models," Ecological Modelling, Elsevier, vol. 326(C), pages 152-161.
    6. Kanapaux, William & Kiker, Gregory A., 2013. "Development and testing of an object-oriented model for adaptively managing human disturbance of least tern (Sternula antillarum) nesting habitat," Ecological Modelling, Elsevier, vol. 268(C), pages 64-77.
    7. Chu-Agor, M.L. & Muñoz-Carpena, R. & Kiker, G.A. & Aiello-Lammens, M.E. & Akçakaya, H.R. & Convertino, M. & Linkov, I., 2012. "Simulating the fate of Florida Snowy Plovers with sea-level rise: Exploring research and management priorities with a global uncertainty and sensitivity analysis perspective," Ecological Modelling, Elsevier, vol. 224(1), pages 33-47.
    8. Petropoulos, G. & Wooster, M.J. & Carlson, T.N. & Kennedy, M.C. & Scholze, M., 2009. "A global Bayesian sensitivity analysis of the 1d SimSphere soil–vegetation–atmospheric transfer (SVAT) model using Gaussian model emulation," Ecological Modelling, Elsevier, vol. 220(19), pages 2427-2440.
    9. Gregory Hill & Steven Kolmes & Michael Humphreys & Rebecca McLain & Eric T. Jones, 2019. "Using decision support tools in multistakeholder environmental planning: restorative justice and subbasin planning in the Columbia River Basin," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 9(2), pages 170-186, June.
    10. Wernsdörfer, H. & Rossi, V. & Cornu, G. & Oddou-Muratorio, S. & Gourlet-Fleury, S., 2008. "Impact of uncertainty in tree mortality on the predictions of a tropical forest dynamics model," Ecological Modelling, Elsevier, vol. 218(3), pages 290-306.
    11. Rougier, Thibaud & Drouineau, Hilaire & Dumoulin, Nicolas & Faure, Thierry & Deffuant, Guillaume & Rochard, Eric & Lambert, Patrick, 2014. "The GR3D model, a tool to explore the Global Repositioning Dynamics of Diadromous fish Distribution," Ecological Modelling, Elsevier, vol. 283(C), pages 31-44.
    12. Lola Gilbert & Tiphaine Jeanniard-du-Dot & Matthieu Authier & Tiphaine Chouvelon & Jérôme Spitz, 2023. "Composition of cetacean communities worldwide shapes their contribution to ocean nutrient cycling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Wu, Qiong-Li & Cournède, Paul-Henry & Mathieu, Amélie, 2012. "An efficient computational method for global sensitivity analysis and its application to tree growth modelling," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 35-43.
    14. Song, Xiaodong & Bryan, Brett A. & Almeida, Auro C. & Paul, Keryn I. & Zhao, Gang & Ren, Yin, 2013. "Time-dependent sensitivity of a process-based ecological model," Ecological Modelling, Elsevier, vol. 265(C), pages 114-123.
    15. Link, Jason S. & Pranovi, Fabio & Libralato, Simone, 2022. "Simulations and interpretations of cumulative trophic theory," Ecological Modelling, Elsevier, vol. 463(C).
    16. Carus, Jana & Heuner, Maike & Paul, Maike & Schröder, Boris, 2017. "Which factors and processes drive the spatio-temporal dynamics of brackish marshes?—Insights from development and parameterisation of a mechanistic vegetation model," Ecological Modelling, Elsevier, vol. 363(C), pages 122-136.
    17. Zhang, Jingjing & Dennis, Todd E. & Landers, Todd J. & Bell, Elizabeth & Perry, George L.W., 2017. "Linking individual-based and statistical inferential models in movement ecology: A case study with black petrels (Procellaria parkinsoni)," Ecological Modelling, Elsevier, vol. 360(C), pages 425-436.
    18. Pal, Saheb & Ghosh, Indrajit, 2023. "Dynamics of a coupled socio-environmental model: An application to global CO2 emissions," Ecological Modelling, Elsevier, vol. 478(C).
    19. Zaatour, Wajdi & Marilleau, Nicolas & Giraudoux, Patrick & Martiny, Nadège & Amara, Abdesslem Ben Haj & Miled, Slimane Ben, 2021. "An agent-based model of a cutaneous leishmaniasis reservoir host, Meriones shawi," Ecological Modelling, Elsevier, vol. 443(C).
    20. Amir Mokhtari & Jane M. Van Doren, 2019. "An Agent‐Based Model for Pathogen Persistence and Cross‐Contamination Dynamics in a Food Facility," Risk Analysis, John Wiley & Sons, vol. 39(5), pages 992-1021, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:380:y:2018:i:c:p:40-52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.