IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v359y2017icp135-145.html
   My bibliography  Save this article

Study on environment-economy-society relationship model of Liaohe River Basin based on multi-agent simulation

Author

Listed:
  • Han, Tianfang
  • Zhang, Chuntao
  • Sun, Yan
  • Hu, Xiaomin

Abstract

Based on sustainable development theory and the method of system dynamics and multi-agent simulation, the environment-economy-society relationship model of Liaohe River Basin is constructed by coupling the system dynamics model with the multi-agent model in the software-NetLogo. This paper selects the Qinghe, Fanhe and Puhe River of Liaohe River Basin which are located in Shenyang and Tieling City as the study boundary, then the overall situation of environment, economy and society development is analyzed. At the same time, in order to simulate and predict the overall operation of the model under different policies, three kinds of development scenarios are established by changing some key variables including pollution abatement investment, fixed assets investment and industrial waste water production of ten thousand yuan industrial output value. The results show that the development under different policies can be simulated and predicted by this model, which will provide support for macroeconomic regulation and control the sustainable development strategy of Liaohe River Basin.

Suggested Citation

  • Han, Tianfang & Zhang, Chuntao & Sun, Yan & Hu, Xiaomin, 2017. "Study on environment-economy-society relationship model of Liaohe River Basin based on multi-agent simulation," Ecological Modelling, Elsevier, vol. 359(C), pages 135-145.
  • Handle: RePEc:eee:ecomod:v:359:y:2017:i:c:p:135-145
    DOI: 10.1016/j.ecolmodel.2017.02.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380016303490
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2017.02.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin, Wei & Xu, Linyu & Yang, Zhifeng, 2009. "Modeling a policy making framework for urban sustainability: Incorporating system dynamics into the Ecological Footprint," Ecological Economics, Elsevier, vol. 68(12), pages 2938-2949, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Qian & Shen, Juqin & Sun, Fuhua, 2021. "Spatiotemporal differentiation of coupling coordination degree between economic development and water environment and its influencing factors using GWR in China's province," Ecological Modelling, Elsevier, vol. 462(C).
    2. Bhandari, Pratik & Creighton, Douglas & Gong, Jinzhe & Boyle, Carol & Law, Kris M.Y., 2023. "Evolution of cyber-physical-human water systems: Challenges and gaps," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    3. Gao, Yan & Liu, Gengyuan & Casazza, Marco & Hao, Yan & Zhang, Yan & Giannetti, Biagio F., 2018. "Economy-pollution nexus model of cities at river basin scale based on multi-agent simulation: A conceptual framework," Ecological Modelling, Elsevier, vol. 379(C), pages 22-38.
    4. Yuanfang Wang & Qijin Geng & Xiaohui Si & Liping Kan, 2021. "Coupling and coordination analysis of urbanization, economy and environment of Shandong Province, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10397-10415, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Broitman, Dani & Ben-Haim, Yakov, 2022. "Forecasting residential sprawl under uncertainty: An info-gap analysis," Land Use Policy, Elsevier, vol. 120(C).
    2. Talwar, Chetan & Joormann, Imke & Ginster, Raphael & Spengler, Thomas Stefan, 2023. "How much can electric aircraft contribute to reaching the Flightpath 2050 CO2 emissions goal? A system dynamics approach for european short haul flights," Journal of Air Transport Management, Elsevier, vol. 112(C).
    3. Browne, David & O'Regan, Bernadette & Moles, Richard, 2012. "Comparison of energy flow accounting, energy flow metabolism ratio analysis and ecological footprinting as tools for measuring urban sustainability: A case-study of an Irish city-region," Ecological Economics, Elsevier, vol. 83(C), pages 97-107.
    4. Banos-González, Isabel & Martínez-Fernández, Julia & Esteve-Selma, Miguel Ángel, 2015. "Dynamic integration of sustainability indicators in insular socio-ecological systems," Ecological Modelling, Elsevier, vol. 306(C), pages 130-144.
    5. Baur, Ivo & Binder, Claudia R., 2015. "Modeling and assessing scenarios of common property pastures management in Switzerland," Ecological Economics, Elsevier, vol. 119(C), pages 292-305.
    6. Aslani, Alireza & Helo, Petri & Naaranoja, Marja, 2014. "Role of renewable energy policies in energy dependency in Finland: System dynamics approach," Applied Energy, Elsevier, vol. 113(C), pages 758-765.
    7. Rozhkov, Anton, 2024. "Applying graph theory to find key leverage points in the transition toward urban renewable energy systems," Applied Energy, Elsevier, vol. 361(C).
    8. Mirakyan, Atom & De Guio, Roland, 2013. "Integrated energy planning in cities and territories: A review of methods and tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 289-297.
    9. Trappey, Amy J.C. & Trappey, Charles & Hsiao, C.T. & Ou, Jerry J.R. & Li, S.J. & Chen, Kevin W.P., 2012. "An evaluation model for low carbon island policy: The case of Taiwan's green transportation policy," Energy Policy, Elsevier, vol. 45(C), pages 510-515.
    10. Navarro, Andres & Tapiador, Francisco J., 2019. "RUSEM: A numerical model for policymaking and climate applications," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.
    11. Lu, Yujie & Chang, Ruidong & Lim, Suxann, 2018. "Crowdfunding for solar photovoltaics development: A review and forecast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 439-450.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:359:y:2017:i:c:p:135-145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.