IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v337y2016icp79-95.html
   My bibliography  Save this article

Exploring the implications of the harvest control rule for Pacific sardine, accounting for predator dynamics: A MICE model

Author

Listed:
  • Punt, André E.
  • MacCall, Alec D.
  • Essington, Timothy E.
  • Francis, Tessa B.
  • Hurtado-Ferro, Felipe
  • Johnson, Kelli F.
  • Kaplan, Isaac C.
  • Koehn, Laura E.
  • Levin, Phillip S.
  • Sydeman, William J.

Abstract

An ecosystem approach to forage fish management is required because forage fish support large fisheries, are prey for many valued species in marine food webs, and provide important social and cultural benefits to humans. Complex ecosystem models are often used to evaluate potential ecosystem consequences of forage fish fisheries, but there is seldom sufficient data to parameterize them, and full consideration of uncertainty is impossible. Models of Intermediate Complexity for Ecosystem assessment (MICE) provide a link between full ecosystem models and tactical (usually single-species) models typically used in fisheries management. MICE are ideal tools to form the basis for management strategy evaluations that compare the ability of candidate strategies to achieve goals related to target fisheries and broader ecosystem protection objectives. A MICE model is developed for the California Current Ecosystem (CCE) that focuses on the fishery for the northern subpopulation of Pacific sardine (Sardinops sajax) and the indirect impacts of the fishery on place-based predators, in particular brown pelicans (Pelecanus occidentalis) and California sea lions (Zalophus californianus), in the Southern California Bight. The model includes three forage species (sardine, northern anchovy Engraulis mordax, and ‘other forage’), an ‘other prey’ category, and two predator species (brown pelican and California sea lion) and evaluates the impacts of variable forage availability on adult predator reproductive success and survival. Parameterization of the model is based on available monitoring data and assessment outputs. The model is used to assess the ecosystem and fishery consequences of the current sardine management systems for Mexico, the USA, and Canada, with a focus on identifying which among a long list of sources of uncertainty in the system are most consequential for predictions of fishery impacts on predators. Key sources of uncertainty to consider in ecosystem assessments for the CCE are how prey abundance and availability impact predator demography and the extent to which the dynamics of prey populations are driven by environmental factors. Data are available for some of these sources of uncertainty for CCE sardine management, but much uncertainty remains, necessitating exploration of sensitivity to alternative model formulations and parameter values when providing advice on management strategies to decision makers.

Suggested Citation

  • Punt, André E. & MacCall, Alec D. & Essington, Timothy E. & Francis, Tessa B. & Hurtado-Ferro, Felipe & Johnson, Kelli F. & Kaplan, Isaac C. & Koehn, Laura E. & Levin, Phillip S. & Sydeman, William J., 2016. "Exploring the implications of the harvest control rule for Pacific sardine, accounting for predator dynamics: A MICE model," Ecological Modelling, Elsevier, vol. 337(C), pages 79-95.
  • Handle: RePEc:eee:ecomod:v:337:y:2016:i:c:p:79-95
    DOI: 10.1016/j.ecolmodel.2016.06.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380016302034
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2016.06.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koehn, Laura E. & Essington, Timothy E. & Marshall, Kristin N. & Kaplan, Isaac C. & Sydeman, William J. & Szoboszlai, Amber I. & Thayer, Julie A., 2016. "Developing a high taxonomic resolution food web model to assess the functional role of forage fish in the California Current ecosystem," Ecological Modelling, Elsevier, vol. 335(C), pages 87-100.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Goedegebuure, Merel & Melbourne-Thomas, Jessica & Corney, Stuart P. & Hindell, Mark A. & Constable, Andrew J., 2017. "Beyond big fish: The case for more detailed representations of top predators in marine ecosystem models," Ecological Modelling, Elsevier, vol. 359(C), pages 182-192.
    2. Kaplan, Isaac C. & Koehn, Laura E. & Hodgson, Emma E. & Marshall, Kristin N. & Essington, Timothy E., 2017. "Modeling food web effects of low sardine and anchovy abundance in the California Current," Ecological Modelling, Elsevier, vol. 359(C), pages 1-24.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Perryman, Holly A. & Tarnecki, Joseph H. & Grüss, Arnaud & Babcock, Elizabeth A. & Sagarese, Skyler R. & Ainsworth, Cameron H. & Gray DiLeone, Alisha M., 2020. "A revised diet matrix to improve the parameterization of a West Florida Shelf Ecopath model for understanding harmful algal bloom impacts," Ecological Modelling, Elsevier, vol. 416(C).
    2. Whitehouse, George A. & Aydin, Kerim Y., 2020. "Assessing the sensitivity of three Alaska marine food webs to perturbations: an example of Ecosim simulations using Rpath," Ecological Modelling, Elsevier, vol. 429(C).
    3. Walters, Carl & Christensen, Villy, 2019. "Effect of non-additivity in mortality rates on predictions of potential yield of forage fishes," Ecological Modelling, Elsevier, vol. 410(C), pages 1-1.
    4. Goedegebuure, Merel & Melbourne-Thomas, Jessica & Corney, Stuart P. & Hindell, Mark A. & Constable, Andrew J., 2017. "Beyond big fish: The case for more detailed representations of top predators in marine ecosystem models," Ecological Modelling, Elsevier, vol. 359(C), pages 182-192.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:337:y:2016:i:c:p:79-95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.