IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v327y2016icp1-17.html
   My bibliography  Save this article

Simulating carbon dioxide exchange in boreal ecosystems flooded by reservoirs

Author

Listed:
  • Kim, Youngil
  • Roulet, Nigel T.
  • Li, Changsheng
  • Frolking, Steve
  • Strachan, Ian B.
  • Peng, Changhui
  • Teodoru, Cristian R.
  • Prairie, Yves T.
  • Tremblay, Alain

Abstract

A process-based reservoir model of Flooded Forest Denitrification Decomposition (FF-DNDC) was developed to simulate carbon dioxide (CO2) exchange from flooded boreal landscapes. The reservoir model is based on Forest-DNDC, a terrestrial biogeochemistry model which supports detailed soil carbon (C) processes including redox chemistry, with modification to represent the disturbed soil and vegetation C dynamics due to the presence of an overlying water column on the ecosystems. Soil decomposition rates and temperature and oxygen profiles were changed, and sedimentation to the soil surface was added. FF-DNDC was evaluated using CO2 exchange measurements from the newly created Eastmain-1 reservoir in northern Quebec, Canada. For the first four years of the reservoir (2006 to 2009), simulated daily CO2 emissions averaged 1.42gCm−2d−1 (ranging from 0.75 to 3.24gCm−2d−1) from the flooded forest and 0.74gCm−2d−1 (ranging from 0.51 to 1.09gCm−2d−1) from the flooded peatland. The simulated emissions were smaller than the thin-filmed boundary layer exchanges based on measured partial pressure of carbon dioxide (pCO2) but were larger than the exchanges measured using an eddy covariance system. However, the temporal patterns of simulated and measured exchanges were similar. We simulated potential CO2 emissions over 100 years, the expected operating lifetime of the reservoir, with assuming no change in climate. Simulated CO2 emissions decreased with time since flooding especially for the first four decades. The 100-year cumulative emissions from the flooded peatland were larger than those from the flooded forest. Sensitivity analysis indicated that vegetation and soil inputs and parameters controlling the quality and/or quantity of decomposable soil C in flooded ecosystems (e.g. woody vegetation biomass, soil organic carbon in organic and mineral layers, and carbon:nitrogen ratio in woody vegetation and soil) were important to the reservoir CO2 emission.

Suggested Citation

  • Kim, Youngil & Roulet, Nigel T. & Li, Changsheng & Frolking, Steve & Strachan, Ian B. & Peng, Changhui & Teodoru, Cristian R. & Prairie, Yves T. & Tremblay, Alain, 2016. "Simulating carbon dioxide exchange in boreal ecosystems flooded by reservoirs," Ecological Modelling, Elsevier, vol. 327(C), pages 1-17.
  • Handle: RePEc:eee:ecomod:v:327:y:2016:i:c:p:1-17
    DOI: 10.1016/j.ecolmodel.2016.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380016000259
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2016.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gagnon, Luc & van de Vate, Joop F., 1997. "Greenhouse gas emissions from hydropower : The state of research in 1996," Energy Policy, Elsevier, vol. 25(1), pages 7-13, January.
    2. Weissenberger, Sebastian & Lucotte, Marc & Houel, Stéphane & Soumis, Nicolas & Duchemin, Éric & Canuel, René, 2010. "Modeling the carbon dynamics of the La Grande hydroelectric complex in northern Quebec," Ecological Modelling, Elsevier, vol. 221(4), pages 610-620.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huiyan Wang & Yong Li & Jia Li & Mengyuan Yu, 2020. "Internalization of External Benefits Brought by Hydropower Development," IJERPH, MDPI, vol. 17(1), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    2. Odeh, Naser A. & Cockerill, Timothy T., 2008. "Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage," Energy Policy, Elsevier, vol. 36(1), pages 367-380, January.
    3. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    4. Feng, Kuishuang & Hubacek, Klaus & Siu, Yim Ling & Li, Xin, 2014. "The energy and water nexus in Chinese electricity production: A hybrid life cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 342-355.
    5. Limmeechokchai, Bundit & Suksuntornsiri, Pawinee, 2007. "Embedded energy and total greenhouse gas emissions in final consumptions within Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(2), pages 259-281, February.
    6. Akhil Kadiyala & Raghava Kommalapati & Ziaul Huque, 2016. "Evaluation of the Life Cycle Greenhouse Gas Emissions from Hydroelectricity Generation Systems," Sustainability, MDPI, vol. 8(6), pages 1-14, June.
    7. Becken, Susanne & Frampton, Chris & Simmons, David, 2001. "Energy consumption patterns in the accommodation sector--the New Zealand case," Ecological Economics, Elsevier, vol. 39(3), pages 371-386, December.
    8. Varun & Bhat, I.K. & Prakash, Ravi, 2009. "LCA of renewable energy for electricity generation systems--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1067-1073, June.
    9. Sovacool, Benjamin K. & Bulan, L.C., 2012. "Energy security and hydropower development in Malaysia: The drivers and challenges facing the Sarawak Corridor of Renewable Energy (SCORE)," Renewable Energy, Elsevier, vol. 40(1), pages 113-129.
    10. Thavasi, V. & Ramakrishna, S., 2009. "Asia energy mixes from socio-economic and environmental perspectives," Energy Policy, Elsevier, vol. 37(11), pages 4240-4250, November.
    11. Gallagher, John & Styles, David & McNabola, Aonghus & Williams, A. Prysor, 2015. "Making green technology greener: Achieving a balance between carbon and resource savings through ecodesign in hydropower systems," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 11-17.
    12. Raadal, Hanne Lerche & Gagnon, Luc & Modahl, Ingunn Saur & Hanssen, Ole Jørgen, 2011. "Life cycle greenhouse gas (GHG) emissions from the generation of wind and hydro power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3417-3422, September.
    13. Varun & Prakash, Ravi & Bhat, Inder Krishnan, 2009. "Energy, economics and environmental impacts of renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2716-2721, December.
    14. Ihtisham ul Haq & Bakhitbay Embergenov & Piratdin Allayarov, 2022. "Nexus between Sources of Electricity Production and Environmental Degradation in Context of EKC Hypothesis: A Time Series Study for Pakistan," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 436-443.
    15. Pascale, Andrew & Urmee, Tania & Moore, Andrew, 2011. "Life cycle assessment of a community hydroelectric power system in rural Thailand," Renewable Energy, Elsevier, vol. 36(11), pages 2799-2808.
    16. Xuerong Li & Faliang Gui & Qingpeng Li, 2019. "Can Hydropower Still Be Considered a Clean Energy Source? Compelling Evidence from a Middle-Sized Hydropower Station in China," Sustainability, MDPI, vol. 11(16), pages 1-13, August.
    17. Briones Hidrovo, Andrei & Uche, Javier & Martínez-Gracia, Amaya, 2017. "Accounting for GHG net reservoir emissions of hydropower in Ecuador," Renewable Energy, Elsevier, vol. 112(C), pages 209-221.
    18. Mark Howells & Brent Boehlert & Pablo César Benitez, 2021. "Potential Climate Change Risks to Meeting Zimbabwe’s NDC Goals and How to Become Resilient," Energies, MDPI, vol. 14(18), pages 1-26, September.
    19. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    20. Karki, Shankar K. & Mann, Michael D. & Salehfar, Hossein, 2005. "Energy and environment in the ASEAN: challenges and opportunities," Energy Policy, Elsevier, vol. 33(4), pages 499-509, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:327:y:2016:i:c:p:1-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.