IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v278y2014icp85-99.html
   My bibliography  Save this article

Numerical modelling on transport of nitrogen from wastewater and fertilizer applied on paddy fields

Author

Listed:
  • Berlin, M.
  • Suresh Kumar, G.
  • Nambi, Indumathi M.

Abstract

A numerical model is developed to predict the nitrogen species concentration in an unsaturated subsurface system due to vertical leaching from wastewater and urea applied paddy field. The important processes like oxygen mass transfer from air phase to water phase and biological clogging due to microbial growth and their impact on nitrogen transformation are considered in this study. Results suggest that a rising and falling trend is observed for hydraulic conductivity in the presence of biological clogging, in which the rise is due to the influence of increase in water saturation and the fall is due to the increase in microbial saturation. The numerical results show that when the total nitrogen applied is 25mg/l continuously by wastewater application, the nitrate nitrogen concentration varies between 18 and 23mg/l at different depths in the absence of biological clogging and between 0 and 24mg/l in the presence of biological clogging. But in the case of 360kgNha−1 urea applied during the transplanting time (first day), the nitrate nitrogen concentration varies between 3 and 8mg/l at different depths in the absence of biological clogging and approximately 0mg/l throughout the depth of the soil column in the presence of clogging. The nitrate nitrogen concentration is 12 and 6mg/l at 100 and 200cm depth, respectively, for the case of three-time split fertilizer application in the presence of biological clogging. In both wastewater and fertilizer application cases, the biological clogging process induces unsaturated hydraulic conductivity reduction which helps to increase the contact time, accelerates nitrogen species transformations and eventually reduces the risk of nitrogen species contamination in groundwater.

Suggested Citation

  • Berlin, M. & Suresh Kumar, G. & Nambi, Indumathi M., 2014. "Numerical modelling on transport of nitrogen from wastewater and fertilizer applied on paddy fields," Ecological Modelling, Elsevier, vol. 278(C), pages 85-99.
  • Handle: RePEc:eee:ecomod:v:278:y:2014:i:c:p:85-99
    DOI: 10.1016/j.ecolmodel.2014.02.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380014000933
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2014.02.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mandal, Sudipto & Ray, Santanu & Ghosh, Phani Bhusan, 2013. "Impact of mangrove litterfall on nitrogen dynamics of virgin and reclaimed islands of Sundarban mangrove ecosystem, India," Ecological Modelling, Elsevier, vol. 252(C), pages 153-166.
    2. Mandal, Sudipto & Ray, Santanu & Ghosh, Phani Bhusan, 2009. "Modelling of the contribution of dissolved inorganic nitrogen (DIN) from litterfall of adjacent mangrove forest to Hooghly–Matla estuary, India," Ecological Modelling, Elsevier, vol. 220(21), pages 2988-3000.
    3. Li, Hua & Liang, Xinqiang & Chen, Yingxu & Tian, Guangming & Zhang, Zhijian, 2008. "Ammonia volatilization from urea in rice fields with zero-drainage water management," Agricultural Water Management, Elsevier, vol. 95(8), pages 887-894, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tan, Xuezhi & Shao, Dongguo & Gu, Wenquan & Liu, Huanhuan, 2015. "Field analysis of water and nitrogen fate in lowland paddy fields under different water managements using HYDRUS-1D," Agricultural Water Management, Elsevier, vol. 150(C), pages 67-80.
    2. Laxmi Linggi & Mohanadhas Berlin & Mainak Mallik & Shantonu Roy & Narayanan Natarajan & Mangottiri Vasudevan, 2021. "Feasibility investigation of adsorptive removal of NH4+ and NO3− species from clayey aquifer using special soils," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 6749-6768, May.
    3. Gao, Chengkang & Zhang, Shuaibing & Song, Kaihui & Na, Hongming & Tian, Fan & Zhang, Menghui & Gao, Wengang, 2018. "Conjoint analysis of nitrogen, phosphorus and sulfur metabolism: A case study of Liaoning Province, China," Ecological Modelling, Elsevier, vol. 390(C), pages 70-78.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yong & Šimůnek, Jirka & Zhang, Zhentin & Jing, Longfei & Ni, Lixiao, 2015. "Evaluation of nitrogen balance in a direct-seeded-rice field experiment using Hydrus-1D," Agricultural Water Management, Elsevier, vol. 148(C), pages 213-222.
    2. Zhao, G.J. & Hörmann, G. & Fohrer, N. & Li, H.P. & Gao, J.F. & Tian, K., 2011. "Development and application of a nitrogen simulation model in a data scarce catchment in South China," Agricultural Water Management, Elsevier, vol. 98(4), pages 619-631, February.
    3. Mukherjee, Joyita & Ray, Santanu & Ghosh, Phani Bhusan, 2013. "A system dynamic modeling of carbon cycle from mangrove litter to the adjacent Hooghly estuary, India," Ecological Modelling, Elsevier, vol. 252(C), pages 185-195.
    4. Sharmiladevi, R. & Ravikumar, V., 2021. "Simulation of nitrogen fertigation schedule for drip irrigated paddy," Agricultural Water Management, Elsevier, vol. 252(C).
    5. Jung, Jae-Woon & Yoon, Kwang-Sik & Choi, Dong-Ho & Lim, Sang-Sun & Choi, Woo-Jung & Choi, Soo-Myung & Lim, Byung-Jin, 2012. "Water management practices and SCS curve numbers of paddy fields equipped with surface drainage pipes," Agricultural Water Management, Elsevier, vol. 110(C), pages 78-83.
    6. Qi, Dongliang & Yan, Jun & Zhu, Jianqiang, 2020. "Effect of a reduced fertilizer rate on the water quality of paddy fields and rice yields under fishpond effluent irrigation," Agricultural Water Management, Elsevier, vol. 231(C).
    7. Mandal, Sudipto & Roy Goswami, Abhishek & Mukhopadhyay, Subhra Kumar & Ray, Santanu, 2015. "Simulation model of phosphorus dynamics of an eutrophic impoundment – East Calcutta Wetlands, a Ramsar site in India," Ecological Modelling, Elsevier, vol. 306(C), pages 226-239.
    8. Sannigrahi, Srikanta, 2017. "Modeling terrestrial ecosystem productivity of an estuarine ecosystem in the Sundarban Biosphere Region, India using seven ecosystem models," Ecological Modelling, Elsevier, vol. 356(C), pages 73-90.
    9. Chenchen Fan & Peng Zhang & Gangfu Song & Huaru Wang & Bingyi Wang, 2021. "Traceability and Emission Reduction of Dissolved Inorganic Nitrogen in Minjiang Estuary, China," IJERPH, MDPI, vol. 18(19), pages 1-15, September.
    10. Mandal, Sudipto & Ray, Santanu & Ghosh, Phani Bhusan, 2013. "Impact of mangrove litterfall on nitrogen dynamics of virgin and reclaimed islands of Sundarban mangrove ecosystem, India," Ecological Modelling, Elsevier, vol. 252(C), pages 153-166.
    11. Xu, Junzeng & Peng, Shizhang & Yang, Shihong & Wang, Weiguang, 2012. "Ammonia volatilization losses from a rice paddy with different irrigation and nitrogen managements," Agricultural Water Management, Elsevier, vol. 104(C), pages 184-192.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:278:y:2014:i:c:p:85-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.