IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v273y2014icp173-185.html
   My bibliography  Save this article

Phenology and density-dependent dispersal predict patterns of mountain pine beetle (Dendroctonus ponderosae) impact

Author

Listed:
  • Powell, James A.
  • Bentz, Barbara J.

Abstract

For species with irruptive population behavior, dispersal is an important component of outbreak dynamics. We developed and parameterized a mechanistic model describing mountain pine beetle (Dendroctonus ponderosae Hopkins) population demographics and dispersal across a landscape. Model components include temperature-dependent phenology, host tree colonization determined by an Allee effect, and random-walk dispersal with motility conditioned by host tree density. The model was parameterized at a study site in central Idaho, United States (US), and evaluated at an independent site in northern Washington, US. Phloem and air temperatures, MPB spatial impact data from USDA Forest Service aerial detection surveys, and remotely sensed host tree density data were used to parameterize the model using a maximum likelihood approach. At both study sites the model was highly accurate (>84%) in predicting annual pattern formation when the model was re-initiated each year with the location of new patches of infested trees. Prediction of annual population growth at both sites was also good (>90%), although the model under-predicted area impacted at the Washington site, and at both sites was unable to predict initiation of new small patches. Our model extends previous research by providing a mechanistic description of the link between motility, dispersal and temperature-dependent MPB phenology.

Suggested Citation

  • Powell, James A. & Bentz, Barbara J., 2014. "Phenology and density-dependent dispersal predict patterns of mountain pine beetle (Dendroctonus ponderosae) impact," Ecological Modelling, Elsevier, vol. 273(C), pages 173-185.
  • Handle: RePEc:eee:ecomod:v:273:y:2014:i:c:p:173-185
    DOI: 10.1016/j.ecolmodel.2013.10.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013005334
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.10.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bone, Christopher & Altaweel, Mark, 2014. "Modeling micro-scale ecological processes and emergent patterns of mountain pine beetle epidemics," Ecological Modelling, Elsevier, vol. 289(C), pages 45-58.
    2. de Godoy, Isabelle Bueno Silva & McGrane-Corrigan, Blake & Mason, Oliver & Moral, Rafael de Andrade & Godoy, Wesley Augusto Conde, 2023. "Plant-host shift, spatial persistence, and the viability of an invasive insect population," Ecological Modelling, Elsevier, vol. 475(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:273:y:2014:i:c:p:173-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.