IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v259y2013icp50-61.html
   My bibliography  Save this article

Discrete and continuous time simulations of spatial ecological processes predict different final population sizes and interspecific competition outcomes

Author

Listed:
  • Mancy, Rebecca
  • Prosser, Patrick
  • Rogers, Simon

Abstract

Cellular automata (CAs) are commonly used to simulate spatial processes in ecology. Although appropriate for modelling events that occur at discrete time points, they are also routinely used to model biological processes that take place continuously. We report on a study comparing predictions of discrete time CA models to those of their continuous time counterpart. Specifically, we investigate how the decision to model time discretely or continuously affects predictions regarding long-run population sizes, the probability of extinction and interspecific competition. We show effects on predicted ecological outcomes, finding quantitative differences in all cases and in the case of interspecific competition, additional qualitative differences in predictions regarding species dominance. Our findings demonstrate that qualitative conclusions drawn from spatial simulations can be critically dependent on the decision to model time discretely or continuously. Contrary to our expectations, simulating in continuous time did not incur a heavy computational penalty. We also raise ecological questions on the relative benefits of reproductive strategies that take place in discrete and continuous time.

Suggested Citation

  • Mancy, Rebecca & Prosser, Patrick & Rogers, Simon, 2013. "Discrete and continuous time simulations of spatial ecological processes predict different final population sizes and interspecific competition outcomes," Ecological Modelling, Elsevier, vol. 259(C), pages 50-61.
  • Handle: RePEc:eee:ecomod:v:259:y:2013:i:c:p:50-61
    DOI: 10.1016/j.ecolmodel.2013.03.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013001701
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.03.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rachael Fleurence & Christopher Hollenbeak, 2007. "Rates and Probabilities in Economic Modelling," PharmacoEconomics, Springer, vol. 25(1), pages 3-6, January.
    2. Birch, Colin P.D. & Oom, Sander P. & Beecham, Jonathan A., 2007. "Rectangular and hexagonal grids used for observation, experiment and simulation in ecology," Ecological Modelling, Elsevier, vol. 206(3), pages 347-359.
    3. Caron-Lormier, Geoffrey & Humphry, Roger W. & Bohan, David A. & Hawes, Cathy & Thorbek, Pernille, 2008. "Asynchronous and synchronous updating in individual-based models," Ecological Modelling, Elsevier, vol. 212(3), pages 522-527.
    4. E Penelope Holland & James N Aegerter & Calvin Dytham & Graham C Smith, 2007. "Landscape as a Model: The Importance of Geometry," PLOS Computational Biology, Public Library of Science, vol. 3(10), pages 1-14, October.
    5. John Vandermeer & Ivette Perfecto & Stacy M. Philpott, 2008. "Clusters of ant colonies and robust criticality in a tropical agroecosystem," Nature, Nature, vol. 451(7177), pages 457-459, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Denis Maragno & Michele Dalla Fontana & Francesco Musco, 2020. "Mapping Heat Stress Vulnerability and Risk Assessment at the Neighborhood Scale to Drive Urban Adaptation Planning," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    2. Ross Richardson & Matteo G. Richiardi & Michael Wolfson, 2015. "We ran one billion agents. Scaling in simulation models," LABORatorio R. Revelli Working Papers Series 142, LABORatorio R. Revelli, Centre for Employment Studies.
    3. Kim, Suji & Lee, Sujin & Ko, Eunjeong & Jang, Kitae & Yeo, Jiho, 2021. "Changes in car and bus usage amid the COVID-19 pandemic: Relationship with land use and land price," Journal of Transport Geography, Elsevier, vol. 96(C).
    4. Pacheco de Castro Flores Ribeiro, Paulo & Osório de Barros de Lima e Santos, José Manuel & Prudêncio Rafael Canadas, Maria João & Contente de Vinha Novais, Ana Maria & Ribeiro Ferraria Moreira, Franci, 2021. "Explaining farming systems spatial patterns: A farm-level choice model based on socioeconomic and biophysical drivers," Agricultural Systems, Elsevier, vol. 191(C).
    5. James D. A. Millington & Hang Xiong & Steve Peterson & Jeremy Woods, 2017. "Integrating Modelling Approaches for Understanding Telecoupling: Global Food Trade and Local Land Use," Land, MDPI, vol. 6(3), pages 1-18, August.
    6. Vinatier, F. & Chauvet, M., 2017. "A neutral model for the simulation of linear networks in territories," Ecological Modelling, Elsevier, vol. 363(C), pages 8-16.
    7. Francesca Peroni & Guglielmo Pristeri & Daniele Codato & Salvatore Eugenio Pappalardo & Massimo De Marchi, 2019. "Biotope Area Factor: An Ecological Urban Index to Geovisualize Soil Sealing in Padua, Italy," Sustainability, MDPI, vol. 12(1), pages 1-17, December.
    8. Jue Wang & Mei-Po Kwan & Yanwei Chai, 2018. "An Innovative Context-Based Crystal-Growth Activity Space Method for Environmental Exposure Assessment: A Study Using GIS and GPS Trajectory Data Collected in Chicago," IJERPH, MDPI, vol. 15(4), pages 1-24, April.
    9. Oliveira, Renata Lúcia Magalhães de & Dablanc, Laetitia & Schorung, Matthieu, 2022. "Changes in warehouse spatial patterns and rental prices: Are they related? Exploring the case of US metropolitan areas," Journal of Transport Geography, Elsevier, vol. 104(C).
    10. Sungsoo Yoon & Youngjoo Moon & Jinah Jeong & Chan-Ryul Park & Wanmo Kang, 2021. "A Network-Based Approach for Reducing Pedestrian Exposure to PM 2.5 Induced by Road Traffic in Seoul," Land, MDPI, vol. 10(10), pages 1-14, October.
    11. Keith Tolley & Michael Hutchinson & Xiaojun You & Ping Wang & Bjoern Sperling & Ankush Taneja & Mohammed Kashif Siddiqui & Elizabeth Kinter, 2015. "A Network Meta-Analysis of Efficacy and Evaluation of Safety of Subcutaneous Pegylated Interferon Beta-1a versus Other Injectable Therapies for the Treatment of Relapsing-Remitting Multiple Sclerosis," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-21, June.
    12. McLane, Adam J. & Semeniuk, Christina & McDermid, Gregory J. & Marceau, Danielle J., 2011. "The role of agent-based models in wildlife ecology and management," Ecological Modelling, Elsevier, vol. 222(8), pages 1544-1556.
    13. Elodie Letort & Pierre Dupraz & Laurent Piet, 2017. "The impact of environmental regulations on the farmland market and farm structures: An agent-based model applied to the Brittany region of France," Working Papers SMART 17-01, INRAE UMR SMART.
    14. Ortigoza, Gerardo M., 2015. "Unstructured triangular cellular automata for modeling geographic spread," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 520-536.
    15. Christopher T. Emrich & Yao Zhou & Sanam K. Aksha & Herbert E. Longenecker, 2022. "Creating a Nationwide Composite Hazard Index Using Empirically Based Threat Assessment Approaches Applied to Open Geospatial Data," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
    16. Maria Fabrizia Clemente, 2022. "The Future Impacts of ESL Events in Euro-Mediterranean Coastal Cities: The Coast-RiskBySea Model to Assess the Potential Economic Damages in Naples, Marseille and Barcelona," Sustainability, MDPI, vol. 14(16), pages 1-22, August.
    17. Sui Zhang & Minghao Wang & Zhao Yang & Baolei Zhang, 2021. "A Novel Predictor for Micro-Scale COVID-19 Risk Modeling: An Empirical Study from a Spatiotemporal Perspective," IJERPH, MDPI, vol. 18(24), pages 1-16, December.
    18. Ryzhkov, Alexander & Sarzhan, Yuliya, 2020. "Market initiative and central planning: A study of the Moscow bus network," Research in Transportation Economics, Elsevier, vol. 83(C).
    19. Louisa G. Gordon & Elizabeth G. Eakin & Rosalind R. Spence & Christopher Pyke & John Bashford & Christobel Saunders & Sandra C. Hayes, 2020. "Cost-Effectiveness Analysis from a Randomized Controlled Trial of Tailored Exercise Prescription for Women with Breast Cancer with 8-Year Follow-Up," IJERPH, MDPI, vol. 17(22), pages 1-13, November.
    20. Marchetti, Yuliya & Nguyen, Hai & Braverman, Amy & Cressie, Noel, 2018. "Spatial data compression via adaptive dispersion clustering," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 138-153.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:259:y:2013:i:c:p:50-61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.