IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v256y2013icp1-5.html
   My bibliography  Save this article

Species distribution models predict range expansion better than chance but not better than a simple dispersal model

Author

Listed:
  • Rodríguez-Rey, Marta
  • Jiménez-Valverde, Alberto
  • Acevedo, Pelayo

Abstract

The evaluation of species distribution models (SDMs) is a crucial step; usually, a random subsample of data is used to test prediction capacity. This procedure, called cross-validation, has been recently shown to overestimate SDMs performance due to spatial autocorrelation. In the case of expanding species, there exists the possibility to test the predictions with non-random geographically structured data, i.e., a new data set which corresponds to the last occupied localities. The aim of this study was to evaluate the capacity of SDMs to predict the range expansion pattern of six free-living deer species in Great Britain and to assess whether SDMs perform better than a simple dispersal model – a null model that assumes no environmental control in the expansion process. Distribution data for the species prior to 1972 were used to train the SDMs (ENFA, MAXENT, logistic regression and an ensemble model) in order to obtain suitability maps. Additionally, the geographical distance to the localities occupied in 1972 was considered a proxy of the probability that a certain locality has to be occupied during an expansion process considering only dispersal (GD model). Subsequently, we analysed whether the species increased their ranges between 1972 and 2006 according to the estimated suitability patterns and whether or not SDMs predictions outperformed GD predictions. SDMs showed a high discrimination capacity in the training data, with the ensemble models performing the best and ENFA models the worst. SDMs predictions also worked better than chance in classifying new occupied localities, although differences among techniques disappeared and the predictions showed no difference with respect to GD. Spatial autocorrelation of both the environmental predictors and the expansion process may explain these results which illustrate that GD is a much more parsimonious model than any of the SDMs and may thus be preferable both for prediction and explanation. Overestimation of SDMs performance and usefulness may be a common fact.

Suggested Citation

  • Rodríguez-Rey, Marta & Jiménez-Valverde, Alberto & Acevedo, Pelayo, 2013. "Species distribution models predict range expansion better than chance but not better than a simple dispersal model," Ecological Modelling, Elsevier, vol. 256(C), pages 1-5.
  • Handle: RePEc:eee:ecomod:v:256:y:2013:i:c:p:1-5
    DOI: 10.1016/j.ecolmodel.2013.01.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013000914
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.01.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dennis Rödder & Sebastian Schmidtlein & Michael Veith & Stefan Lötters, 2009. "Alien Invasive Slider Turtle in Unpredicted Habitat: A Matter of Niche Shift or of Predictors Studied?," PLOS ONE, Public Library of Science, vol. 4(11), pages 1-9, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ochoa-Ochoa, Leticia M. & Flores-Villela, Oscar A. & Bezaury-Creel, Juan E., 2016. "Using one vs. many, sensitivity and uncertainty analyses of species distribution models with focus on conservation area networks," Ecological Modelling, Elsevier, vol. 320(C), pages 372-382.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gengping Zhu & Matthew J Petersen & Wenjun Bu, 2012. "Selecting Biological Meaningful Environmental Dimensions of Low Discrepancy among Ranges to Predict Potential Distribution of Bean Plataspid Invasion," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-9, September.
    2. Zeng, Yiwen & Low, Bi Wei & Yeo, Darren C.J., 2016. "Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish," Ecological Modelling, Elsevier, vol. 341(C), pages 5-13.
    3. Bipin Kumar Acharya & Chunxiang Cao & Min Xu & Laxman Khanal & Shahid Naeem & Shreejana Pandit, 2018. "Present and Future of Dengue Fever in Nepal: Mapping Climatic Suitability by Ecological Niche Model," IJERPH, MDPI, vol. 15(2), pages 1-15, January.
    4. Banha, Filipe & Gama, Mafalda & Anastácio, Pedro Manuel, 2017. "The effect of reproductive occurrences and human descriptors on invasive pet distribution modelling: Trachemys scripta elegans in the Iberian Peninsula," Ecological Modelling, Elsevier, vol. 360(C), pages 45-52.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:256:y:2013:i:c:p:1-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.