IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v251y2013icp246-259.html
   My bibliography  Save this article

Modeling of decadal scale phosphorus retention in lake sediment under varying redox conditions

Author

Listed:
  • Katsev, Sergei
  • Dittrich, Maria

Abstract

Phosphorus (P) releases from lake sediments are controlled in the long term by P burial into the deep sediment and on shorter time scales by the redox conditions at the sediment–water interface. In Lake Sempach (Switzerland), hypolimnetic oxygen concentration was increased by artificial aeration after two decades of nearly anoxic conditions. Using diagenetic reaction-transport modeling and sediment core analysis, we investigated the effects that this change, as well as variations in the organic carbon loadings, had on the long-term mobility of sediment P. During low-oxygen conditions, the reducible iron pool in the sediment was depleted, resulting in the release of previously accumulated P. The remobilization of iron-bound P affected phosphate effluxes from the sediment on the time scale of the sediment iron cycle (several years). On longer time scales, P effluxes followed the sedimentation fluxes of organic matter. Mass balance calculations indicate that, despite the dominance of internal P loading in Lake Sempach, over the long-term phosphorus content in the water column was controlled by the external P inputs. The results suggest that, whereas short-term decreases in sediment P releases may be achieved by preventing sediment anoxia, long-term solutions should involve reductions in the external P inputs.

Suggested Citation

  • Katsev, Sergei & Dittrich, Maria, 2013. "Modeling of decadal scale phosphorus retention in lake sediment under varying redox conditions," Ecological Modelling, Elsevier, vol. 251(C), pages 246-259.
  • Handle: RePEc:eee:ecomod:v:251:y:2013:i:c:p:246-259
    DOI: 10.1016/j.ecolmodel.2012.12.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012005741
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.12.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dittrich, M. & Wehrli, B. & Reichert, P., 2009. "Lake sediments during the transient eutrophication period: Reactive-transport model and identifiability study," Ecological Modelling, Elsevier, vol. 220(20), pages 2751-2769.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linda Sarpong & Yiping Li & Eyram Norgbey & Amechi S. Nwankwegu & Yue Cheng & Salifu Nasiru & Isaac Kwesi Nooni & Victor Edem Setordjie, 2020. "A Sediment Diagenesis Model of Seasonal Nitrate and Ammonium Flux Spatial Variation Contributing to Eutrophication at Taihu, China," IJERPH, MDPI, vol. 17(11), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Likun & Zhao, Xinhua & Peng, Sen & Li, Xia, 2016. "Water quality assessment analysis by using combination of Bayesian and genetic algorithm approach in an urban lake, China," Ecological Modelling, Elsevier, vol. 339(C), pages 77-88.
    2. Ramin, Maryam & Labencki, Tanya & Boyd, Duncan & Trolle, Dennis & Arhonditsis, George B., 2012. "A Bayesian synthesis of predictions from different models for setting water quality criteria," Ecological Modelling, Elsevier, vol. 242(C), pages 127-145.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:251:y:2013:i:c:p:246-259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.