IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v248y2013icp113-118.html
   My bibliography  Save this article

The sensitivity of species distribution modeling to scale differences

Author

Listed:
  • Song, Wonkyong
  • Kim, Eunyoung
  • Lee, Dongkun
  • Lee, Moungjin
  • Jeon, Seong-Woo

Abstract

Species distribution modeling is one of the most effective habitat analysis methods for wildlife conservation. We evaluated the sensitivity of species distribution modeling to different grain sizes and extent sizes from 30m to 4950m using maximum entropy (MaxEnt) modeling. The grain size represents a unit for analysis, whereas the extent size defines the scope of the analysis in a way that reflects the environmental data for the area in which the species of interest occurs. We compared the resulting suitability indexes and habitat areas based on two approaches. The first approach increases the extent size for a fixed grain size. The second approach increases the grain size and the extent size by equal amounts. The suitability index based on the first approach (R2=0.34) was greater than the suitability index based on the second approach (R2=0.89). The first approach was fitted to a logarithmic function with a critical point at approximately 0.5km, converging to about 0.76. In contrast, the second approach showed a linear decrease to values less than 0.5. The distribution of habitat area found with the second method (R2=0.87) was broader than that found with the first method (R2=0.63). The relationship between the extent size and the landscape index of the first method can be displayed as a power-law graph with a critical point of 0.5km. The method of expanding extent size has greater accuracy, although the time that it requires for data processing is long. The results of this study suggest that the maximum grain size should be approximately 1.5km. If the grain size is greater than 1.5km, the accuracy of the habitat suitability index decreases below 0.6, and the predicted habitat suitability increases dramatically.

Suggested Citation

  • Song, Wonkyong & Kim, Eunyoung & Lee, Dongkun & Lee, Moungjin & Jeon, Seong-Woo, 2013. "The sensitivity of species distribution modeling to scale differences," Ecological Modelling, Elsevier, vol. 248(C), pages 113-118.
  • Handle: RePEc:eee:ecomod:v:248:y:2013:i:c:p:113-118
    DOI: 10.1016/j.ecolmodel.2012.09.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012004772
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.09.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gottschalk, Thomas K. & Aue, Birgit & Hotes, Stefan & Ekschmitt, Klemens, 2011. "Influence of grain size on species–habitat models," Ecological Modelling, Elsevier, vol. 222(18), pages 3403-3412.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Van Eupen, Camille & Maes, Dirk & Herremans, Marc & Swinnen, Kristijn R.R. & Somers, Ben & Luca, Stijn, 2021. "The impact of data quality filtering of opportunistic citizen science data on species distribution model performance," Ecological Modelling, Elsevier, vol. 444(C).
    2. Syed Amir Manzoor & Aisha Malik & Muhammad Zubair & Geoffrey Griffiths & Martin Lukac, 2019. "Linking Social Perception and Provision of Ecosystem Services in a Sprawling Urban Landscape: A Case Study of Multan, Pakistan," Sustainability, MDPI, vol. 11(3), pages 1-15, January.
    3. Abdulwahab, Umarfarooq A. & Hammill, Edd & Hawkins, Charles P., 2022. "Choice of climate data affects the performance and interpretation of species distribution models," Ecological Modelling, Elsevier, vol. 471(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:248:y:2013:i:c:p:113-118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.