IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v239y2012icp14-26.html
   My bibliography  Save this article

Simulating canopy photosynthesis for two competing species of an anthropogenic grassland community in the Andes of southern Ecuador

Author

Listed:
  • Silva, Brenner
  • Roos, Kristin
  • Voss, Ingo
  • König, Nicolas
  • Rollenbeck, Rütger
  • Scheibe, Renate
  • Beck, Erwin
  • Bendix, Jörg

Abstract

Tropical mountain forest in the Andes of southeastern Ecuador is regularly destroyed to gain pasture land by cultivating the C4 grass Setaria sphacelata. After recurrent burning of the pastures, the grass is partly outcompeted by the C3 southern bracken (Pteridium arachnoideum). This competition represents the problematic of pasture degradation and increasing deforestation, due to the necessity of new pasture land. Because no information on the growth potential of both species in the Andes of Ecuador is available, a growth simulation model has been improved and properly parameterized with field observations. The measured species- and site-specific physiological and edaphic parameters are presented in this paper, as well as the model validation with field observations of leaf CO2 assimilation. The validation showed deviations of simulated from observed leaf net assimilation lower than 5% of the observed values. The validated model was run with a fully realistic meteorological forcing of the year 2008 (10min time step). The main result points to slightly higher growth potential of Setaria with 5879gm−2a−1, based on an annual CO2 net assimilation rate of 217molCO2m−2a−1. The calculated growth potential of bracken was 5554gm−2a−1, based on the CO2 net assimilation of 197molCO2m−2a−1. In addition, it was shown that decreasing incoming solar radiation and low temperature are favourable weather conditions for bracken in contrary to the pasture grass Setaria.

Suggested Citation

  • Silva, Brenner & Roos, Kristin & Voss, Ingo & König, Nicolas & Rollenbeck, Rütger & Scheibe, Renate & Beck, Erwin & Bendix, Jörg, 2012. "Simulating canopy photosynthesis for two competing species of an anthropogenic grassland community in the Andes of southern Ecuador," Ecological Modelling, Elsevier, vol. 239(C), pages 14-26.
  • Handle: RePEc:eee:ecomod:v:239:y:2012:i:c:p:14-26
    DOI: 10.1016/j.ecolmodel.2012.01.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012000361
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.01.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pachepsky, L. B. & Acock, B., 1996. "An adequate model of photosynthesis -- II. Dependence of parameters on environmental factors," Agricultural Systems, Elsevier, vol. 50(2), pages 227-238.
    2. Göttlicher, Dietrich & Albert, Janina & Nauss, Thomas & Bendix, Jörg, 2011. "Optical properties of selected plants from a tropical mountain ecosystem – Traits for plant functional types to parametrize a land surface model," Ecological Modelling, Elsevier, vol. 222(3), pages 493-502.
    3. Nicolas Vuichard & Philippe Ciais & Luca Belelli-Marchesini & Riccardo Valentini, 2010. "New Parameterization of a Global Vegetation Model for Steppe Ecosystem From Southern Siberian In Situ Measurements," Post-Print hal-00716668, HAL.
    4. Boland, John & Ridley, Barbara & Brown, Bruce, 2008. "Models of diffuse solar radiation," Renewable Energy, Elsevier, vol. 33(4), pages 575-584.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Furlan, Claudia & de Oliveira, Amauri Pereira & Soares, Jacyra & Codato, Georgia & Escobedo, João Francisco, 2012. "The role of clouds in improving the regression model for hourly values of diffuse solar radiation," Applied Energy, Elsevier, vol. 92(C), pages 240-254.
    2. Deo, Ravinesh C. & Şahin, Mehmet, 2017. "Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 828-848.
    3. Boland, John & Huang, Jing & Ridley, Barbara, 2013. "Decomposing global solar radiation into its direct and diffuse components," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 749-756.
    4. Vincenzo Costanzo & Gianpiero Evola & Marco Infantone & Luigi Marletta, 2020. "Updated Typical Weather Years for the Energy Simulation of Buildings in Mediterranean Climate. A Case Study for Sicily," Energies, MDPI, vol. 13(16), pages 1-24, August.
    5. Wang, Hong & Sun, Fubao & Wang, Tingting & Liu, Wenbin, 2018. "Estimation of daily and monthly diffuse radiation from measurements of global solar radiation a case study across China," Renewable Energy, Elsevier, vol. 126(C), pages 226-241.
    6. Deo, Ravinesh C. & Şahin, Mehmet & Adamowski, Jan F. & Mi, Jianchun, 2019. "Universally deployable extreme learning machines integrated with remotely sensed MODIS satellite predictors over Australia to forecast global solar radiation: A new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 235-261.
    7. Li, Huashan & Ma, Weibin & Wang, Xianlong & Lian, Yongwang, 2011. "Estimating monthly average daily diffuse solar radiation with multiple predictors: A case study," Renewable Energy, Elsevier, vol. 36(7), pages 1944-1948.
    8. Alam, Shah & Kaushik, S.C. & Garg, S.N., 2009. "Assessment of diffuse solar energy under general sky condition using artificial neural network," Applied Energy, Elsevier, vol. 86(4), pages 554-564, April.
    9. Kuo, Chia-Wei & Chang, Wen-Chey & Chang, Keh-Chin, 2014. "Modeling the hourly solar diffuse fraction in Taiwan," Renewable Energy, Elsevier, vol. 66(C), pages 56-61.
    10. Lauret, Philippe & Boland, John & Ridley, Barbara, 2013. "Bayesian statistical analysis applied to solar radiation modelling," Renewable Energy, Elsevier, vol. 49(C), pages 124-127.
    11. Deo, Ravinesh C. & Wen, Xiaohu & Qi, Feng, 2016. "A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset," Applied Energy, Elsevier, vol. 168(C), pages 568-593.
    12. Jacovides, C.P. & Boland, J. & Asimakopoulos, D.N. & Kaltsounides, N.A., 2010. "Comparing diffuse radiation models with one predictor for partitioning incident PAR radiation into its diffuse component in the eastern Mediterranean basin," Renewable Energy, Elsevier, vol. 35(8), pages 1820-1827.
    13. Serena Summa & Giada Remia & Ambra Sebastianelli & Gianluca Coccia & Costanzo Di Perna, 2022. "Impact on Thermal Energy Needs Caused by the Use of Different Solar Irradiance Decomposition and Transposition Models: Application of EN ISO 52016-1 and EN ISO 52010-1 Standards for Five European Citi," Energies, MDPI, vol. 15(23), pages 1-18, November.
    14. Jiang, Yingni, 2008. "Prediction of monthly mean daily diffuse solar radiation using artificial neural networks and comparison with other empirical models," Energy Policy, Elsevier, vol. 36(10), pages 3833-3837, October.
    15. Marques Filho, Edson P. & Oliveira, Amauri P. & Vita, Willian A. & Mesquita, Francisco L.L. & Codato, Georgia & Escobedo, João F. & Cassol, Mariana & França, José Ricardo A., 2016. "Global, diffuse and direct solar radiation at the surface in the city of Rio de Janeiro: Observational characterization and empirical modeling," Renewable Energy, Elsevier, vol. 91(C), pages 64-74.
    16. Liu, Peirong & Tong, Xiaojuan & Zhang, Jinsong & Meng, Ping & Li, Jun & Zhang, Jingru, 2020. "Estimation of half-hourly diffuse solar radiation over a mixed plantation in north China," Renewable Energy, Elsevier, vol. 149(C), pages 1360-1369.
    17. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparative analysis of diffuse solar radiation models based on sky-clearness index and sunshine period for humid-subtropical climatic region of India: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 329-355.
    18. Jawed Mustafa & Shahid Husain & Saeed Alqaed & Uzair Ali Khan & Basharat Jamil, 2022. "Performance of Two Variable Machine Learning Models to Forecast Monthly Mean Diffuse Solar Radiation across India under Various Climate Zones," Energies, MDPI, vol. 15(21), pages 1-32, October.
    19. Morf, Heinrich, 2018. "Regression by Integration demonstrated on Ångström-Prescott-type relations," Renewable Energy, Elsevier, vol. 127(C), pages 713-723.
    20. Karakoti, Indira & Pande, Bimal & Pandey, Kavita, 2011. "Evaluation of different diffuse radiation models for Indian stations and predicting the best fit model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2378-2384, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:239:y:2012:i:c:p:14-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.