IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v237-238y2012ip34-42.html
   My bibliography  Save this article

Using a Markov-Chain Monte-Carlo modelling approach to identify the relative risk to farmed Scottish Rainbow trout (Oncorhynchus mykiss) in a multi-sector industry of Viral Haemorrhagic Septicaemia Viruses from introduction and emergent sources

Author

Listed:
  • Kilburn, R.
  • Gregory, A.
  • Murray, A.G.

Abstract

The risks of introduction of Viral Haemorrhagic Septicaemia Virus (VHSV) into farmed Scottish Rainbow trout (Oncorhynchus mykiss) was simulated using a simple but robust Markov-Chain Monte-Carlo (MCMC) modelling approach. Outputs from the models were subjected to sensitivity analysis to investigate the contribution towards these risks to our parameter assumptions. The aim was to identify the factors whereby Viral Haemorrhagic Septicaemia (VHS) outbreaks are likely to be most sensitive to and thereby most likely susceptible to control against VHSV genotype 1a (G1a) from continental Europe versus the emergence of VHSV genotype 1b (G1b) or VHSV genotype 3 (G3) from within native marine fish populations. Seven scenarios were tested for the three VHSV genotypes that represent different assumptions as to the epidemiology of VHS, different environmental conditions and or possible future expansion of aquaculture. Results from the MCMC model outputs and sensitivity analysis confirm that the greatest risk to fresh water rainbow trout are from VHSV G1a and G3 for marine rainbow trout. Sensitivity analysis revealed that probabilities of introduction and persistence of VHSV G1a in the freshwater environment and freshwater trout were the parameters that had the most significant effect on the model outputs. Atlantic salmon (Salmo salar) was not significantly affected in any of the scenarios and so salmon-associated parameters play very little role in the risk to freshwater rainbow trout. The scenarios are not intended to be absolute but are the best we have for exploring a range of assumptions that may put Scottish freshwater rainbow trout at risk of VHS.

Suggested Citation

  • Kilburn, R. & Gregory, A. & Murray, A.G., 2012. "Using a Markov-Chain Monte-Carlo modelling approach to identify the relative risk to farmed Scottish Rainbow trout (Oncorhynchus mykiss) in a multi-sector industry of Viral Haemorrhagic Septicaemia Vi," Ecological Modelling, Elsevier, vol. 237, pages 34-42.
  • Handle: RePEc:eee:ecomod:v:237-238:y:2012:i::p:34-42
    DOI: 10.1016/j.ecolmodel.2012.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012001688
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pawlowski, Christopher W. & McCord, Christopher, 2009. "A Markov model for assessing ecological stability properties," Ecological Modelling, Elsevier, vol. 220(2), pages 86-95.
    2. Cariboni, J. & Gatelli, D. & Liska, R. & Saltelli, A., 2007. "The role of sensitivity analysis in ecological modelling," Ecological Modelling, Elsevier, vol. 203(1), pages 167-182.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco A. Buendia-Hernandez & Maria J. Ortiz Bevia & Francisco J. Alvarez-Garcia & Antonio Ruizde Elvira, 2022. "Sensitivity of a Dynamic Model of Air Traffic Emissions to Technological and Environmental Factors," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    2. Imron, Muhammad Ali & Gergs, Andre & Berger, Uta, 2012. "Structure and sensitivity analysis of individual-based predator–prey models," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 71-81.
    3. Pelletier, Dominique & Mahevas, Stéphanie & Drouineau, Hilaire & Vermard, Youen & Thebaud, Olivier & Guyader, Olivier & Poussin, Benjamin, 2009. "Evaluation of the bioeconomic sustainability of multi-species multi-fleet fisheries under a wide range of policy options using ISIS-Fish," Ecological Modelling, Elsevier, vol. 220(7), pages 1013-1033.
    4. Frank H. Koch & Denys Yemshanov & Daniel W. McKenney & William D. Smith, 2009. "Evaluating Critical Uncertainty Thresholds in a Spatial Model of Forest Pest Invasion Risk," Risk Analysis, John Wiley & Sons, vol. 29(9), pages 1227-1241, September.
    5. Lorscheid, Iris & Meyer, Matthias, 2016. "Divide and conquer: Configuring submodels for valid and efficient analyses of complex simulation models," Ecological Modelling, Elsevier, vol. 326(C), pages 152-161.
    6. Kanapaux, William & Kiker, Gregory A., 2013. "Development and testing of an object-oriented model for adaptively managing human disturbance of least tern (Sternula antillarum) nesting habitat," Ecological Modelling, Elsevier, vol. 268(C), pages 64-77.
    7. Chu-Agor, M.L. & Muñoz-Carpena, R. & Kiker, G.A. & Aiello-Lammens, M.E. & Akçakaya, H.R. & Convertino, M. & Linkov, I., 2012. "Simulating the fate of Florida Snowy Plovers with sea-level rise: Exploring research and management priorities with a global uncertainty and sensitivity analysis perspective," Ecological Modelling, Elsevier, vol. 224(1), pages 33-47.
    8. Petropoulos, G. & Wooster, M.J. & Carlson, T.N. & Kennedy, M.C. & Scholze, M., 2009. "A global Bayesian sensitivity analysis of the 1d SimSphere soil–vegetation–atmospheric transfer (SVAT) model using Gaussian model emulation," Ecological Modelling, Elsevier, vol. 220(19), pages 2427-2440.
    9. Gregory Hill & Steven Kolmes & Michael Humphreys & Rebecca McLain & Eric T. Jones, 2019. "Using decision support tools in multistakeholder environmental planning: restorative justice and subbasin planning in the Columbia River Basin," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 9(2), pages 170-186, June.
    10. Wernsdörfer, H. & Rossi, V. & Cornu, G. & Oddou-Muratorio, S. & Gourlet-Fleury, S., 2008. "Impact of uncertainty in tree mortality on the predictions of a tropical forest dynamics model," Ecological Modelling, Elsevier, vol. 218(3), pages 290-306.
    11. Rougier, Thibaud & Drouineau, Hilaire & Dumoulin, Nicolas & Faure, Thierry & Deffuant, Guillaume & Rochard, Eric & Lambert, Patrick, 2014. "The GR3D model, a tool to explore the Global Repositioning Dynamics of Diadromous fish Distribution," Ecological Modelling, Elsevier, vol. 283(C), pages 31-44.
    12. Lola Gilbert & Tiphaine Jeanniard-du-Dot & Matthieu Authier & Tiphaine Chouvelon & Jérôme Spitz, 2023. "Composition of cetacean communities worldwide shapes their contribution to ocean nutrient cycling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Wu, Qiong-Li & Cournède, Paul-Henry & Mathieu, Amélie, 2012. "An efficient computational method for global sensitivity analysis and its application to tree growth modelling," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 35-43.
    14. Song, Xiaodong & Bryan, Brett A. & Almeida, Auro C. & Paul, Keryn I. & Zhao, Gang & Ren, Yin, 2013. "Time-dependent sensitivity of a process-based ecological model," Ecological Modelling, Elsevier, vol. 265(C), pages 114-123.
    15. Link, Jason S. & Pranovi, Fabio & Libralato, Simone, 2022. "Simulations and interpretations of cumulative trophic theory," Ecological Modelling, Elsevier, vol. 463(C).
    16. Carus, Jana & Heuner, Maike & Paul, Maike & Schröder, Boris, 2017. "Which factors and processes drive the spatio-temporal dynamics of brackish marshes?—Insights from development and parameterisation of a mechanistic vegetation model," Ecological Modelling, Elsevier, vol. 363(C), pages 122-136.
    17. Zhang, Jingjing & Dennis, Todd E. & Landers, Todd J. & Bell, Elizabeth & Perry, George L.W., 2017. "Linking individual-based and statistical inferential models in movement ecology: A case study with black petrels (Procellaria parkinsoni)," Ecological Modelling, Elsevier, vol. 360(C), pages 425-436.
    18. Pal, Saheb & Ghosh, Indrajit, 2023. "Dynamics of a coupled socio-environmental model: An application to global CO2 emissions," Ecological Modelling, Elsevier, vol. 478(C).
    19. Zaatour, Wajdi & Marilleau, Nicolas & Giraudoux, Patrick & Martiny, Nadège & Amara, Abdesslem Ben Haj & Miled, Slimane Ben, 2021. "An agent-based model of a cutaneous leishmaniasis reservoir host, Meriones shawi," Ecological Modelling, Elsevier, vol. 443(C).
    20. Amir Mokhtari & Jane M. Van Doren, 2019. "An Agent‐Based Model for Pathogen Persistence and Cross‐Contamination Dynamics in a Food Facility," Risk Analysis, John Wiley & Sons, vol. 39(5), pages 992-1021, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:237-238:y:2012:i::p:34-42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.