IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v230y2012icp63-72.html
   My bibliography  Save this article

Impact of maximum sustainable yield on mutualistic communities

Author

Listed:
  • Legović, Tarzan
  • Geček, Sunčana

Abstract

We analyze effects of reaching the maximum sustainable yield (MSY) in a system of n cooperating logistic populations under proportional harvesting strategy. In case a selective harvesting effort adjusted to each species is implemented, the optimum effort is smaller than half the biotic potential of each species. This results in the total maximum sustainable yield (TMSY1) which does not affect the persistence of the system. In case the system is harvested with a common harvesting effort which is approximately the same for all cooperating species, like in a trawler fishing, the optimum harvesting effort leads to the TMSY2, where TMSY1≥TMSY2. In addition, species with lower biotic potential and carrying capacity may be driven to extinction, especially if these species weakly cooperate with the rest of the system. Hence, a call for implementation of TMSY2 may be equivalent to a call for extermination of some species, and it runs against the Convention on Biological Diversity (CBD, 1992). Since the documents advocating MSY, starting with the Johannesburg Implementation plan (IP, 2002) and including the EU Green Paper (EU, 2009), use TMSY2, the call for MSY must be urgently retracted and replaced with a call for adaptive management that respects CBD.

Suggested Citation

  • Legović, Tarzan & Geček, Sunčana, 2012. "Impact of maximum sustainable yield on mutualistic communities," Ecological Modelling, Elsevier, vol. 230(C), pages 63-72.
  • Handle: RePEc:eee:ecomod:v:230:y:2012:i:c:p:63-72
    DOI: 10.1016/j.ecolmodel.2012.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012000178
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Legović, Tarzan & Klanjšček, Jasminka & Geček, Sunčana, 2010. "Maximum sustainable yield and species extinction in ecosystems," Ecological Modelling, Elsevier, vol. 221(12), pages 1569-1574.
    2. Legović, Tarzan & Geček, Sunčana, 2010. "Impact of maximum sustainable yield on independent populations," Ecological Modelling, Elsevier, vol. 221(17), pages 2108-2111.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Das, Debabrata & Kar, T.K. & Pal, Debprasad, 2023. "The impact of invasive species on some ecological services in a harvested predator–prey system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 66-90.
    2. Kar, T.K. & Ghosh, Bapan, 2013. "Impacts of maximum sustainable yield policy to prey–predator systems," Ecological Modelling, Elsevier, vol. 250(C), pages 134-142.
    3. Animesh Mahata & Sankar Prasad Mondal & Banamali Roy & Shariful Alam, 2021. "Study of two species prey-predator model in imprecise environment with MSY policy under different harvesting scenario," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14908-14932, October.
    4. Ji, Guilin & Ge, Qing & Xu, Jiabo, 2016. "Dynamic behaviors of a fractional order two-species cooperative systems with harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 51-55.
    5. Pierre Auger & Ali Moussaoui, 2022. "Coupling of Bio-Reactors to Increase Maximum Sustainable Yield," Mathematics, MDPI, vol. 10(4), pages 1-18, February.
    6. Móréh, Ágnes & Endrédi, Anett & Piross, Sándor Imre & Jordán, Ferenc, 2021. "Topology of additive pairwise effects in food webs," Ecological Modelling, Elsevier, vol. 440(C).
    7. Ghosh, Bapan & Kar, T.K., 2014. "Sustainable use of prey species in a prey–predator system: Jointly determined ecological thresholds and economic trade-offs," Ecological Modelling, Elsevier, vol. 272(C), pages 49-58.
    8. Barman, Binandita & Ghosh, Bapan, 2019. "Explicit impacts of harvesting in delayed predator-prey models," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 213-228.
    9. Auger, Pierre & Kooi, Bob & Moussaoui, Ali, 2022. "Increase of maximum sustainable yield for fishery in two patches with fast migration," Ecological Modelling, Elsevier, vol. 467(C).
    10. Woodall, Hannah & Bullock, James M. & White, Steven M., 2014. "Modelling the harvest of an insect pathogen," Ecological Modelling, Elsevier, vol. 287(C), pages 16-26.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Móréh, Ágnes & Endrédi, Anett & Piross, Sándor Imre & Jordán, Ferenc, 2021. "Topology of additive pairwise effects in food webs," Ecological Modelling, Elsevier, vol. 440(C).
    2. Woodall, Hannah & Bullock, James M. & White, Steven M., 2014. "Modelling the harvest of an insect pathogen," Ecological Modelling, Elsevier, vol. 287(C), pages 16-26.
    3. Kar, T.K. & Ghosh, Bapan, 2013. "Impacts of maximum sustainable yield policy to prey–predator systems," Ecological Modelling, Elsevier, vol. 250(C), pages 134-142.
    4. Ghosh, Bapan & Kar, T.K., 2014. "Sustainable use of prey species in a prey–predator system: Jointly determined ecological thresholds and economic trade-offs," Ecological Modelling, Elsevier, vol. 272(C), pages 49-58.
    5. Violaine Tarizzo & Eric Tromeur & Olivier Thébaud & Richard Little & Sarah Jennings & Luc Doyen, 2018. "Risk averse policies foster bio-economic sustainability in mixed fisheries," Cahiers du GREThA (2007-2019) 2018-07, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    6. Tromeur, Eric & Doyen, Luc & Tarizzo, Violaine & Little, L. Richard & Jennings, Sarah & Thébaud, Olivier, 2021. "Risk averse policies foster bio-economic sustainability in mixed fisheries," Ecological Economics, Elsevier, vol. 190(C).
    7. Legović, Tarzan & Geček, Sunčana, 2010. "Impact of maximum sustainable yield on independent populations," Ecological Modelling, Elsevier, vol. 221(17), pages 2108-2111.
    8. Rajni, & Ghosh, Bapan, 2022. "Multistability, chaos and mean population density in a discrete-time predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    9. Pierre Auger & Ali Moussaoui, 2022. "Coupling of Bio-Reactors to Increase Maximum Sustainable Yield," Mathematics, MDPI, vol. 10(4), pages 1-18, February.
    10. Adrien Lagarde & Abdoul Ahad-Cissé & Sophie Gourguet & Olivier Le Pape & Olivier Thébaud & Nathalie Caill-Milly & Gilles Morandeau & Claire Macher & Luc Doyen, 2017. "How MMEY mitigates bio-economic impacts of climate change on mixed fisheries," Cahiers du GREThA (2007-2019) 2017-22, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    11. Helene Gomes & Luc Doyen & Fabian Blanchard & Adrien Lagarde, 2021. "Viable and ecosystem-based management for tropical small-scale fisheries facing climate change," Bordeaux Economics Working Papers 2021-24, Bordeaux School of Economics (BSE).
    12. Das, Debabrata & Kar, T.K. & Pal, Debprasad, 2023. "The impact of invasive species on some ecological services in a harvested predator–prey system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 66-90.
    13. Adhikary, Prabir Das & Mukherjee, Saikat & Ghosh, Bapan, 2021. "Bifurcations and hydra effects in Bazykin’s predator–prey model," Theoretical Population Biology, Elsevier, vol. 140(C), pages 44-53.
    14. Auger, Pierre & Kooi, Bob & Moussaoui, Ali, 2022. "Increase of maximum sustainable yield for fishery in two patches with fast migration," Ecological Modelling, Elsevier, vol. 467(C).
    15. Barman, Binandita & Ghosh, Bapan, 2019. "Explicit impacts of harvesting in delayed predator-prey models," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 213-228.
    16. Lagarde, A. & Doyen, L. & Ahad-Cissé, A. & Caill-Milly, N. & Gourguet, S. & Pape, O. Le & Macher, C. & Morandeau, G. & Thébaud, O., 2018. "How Does MMEY Mitigate the Bioeconomic Effects of Climate Change for Mixed Fisheries," Ecological Economics, Elsevier, vol. 154(C), pages 317-332.
    17. Liu, Guodong & Chang, Zhengbo & Meng, Xinzhu & Liu, Siyu, 2020. "Optimality for a diffusive predator-prey system in a spatially heterogeneous environment incorporating a prey refuge," Applied Mathematics and Computation, Elsevier, vol. 384(C).
    18. Barnes, Belinda & Sidhu, Harvinder, 2013. "The impact of marine closed areas on fishing yield under a variety of management strategies and stock depletion levels," Ecological Modelling, Elsevier, vol. 269(C), pages 113-125.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:230:y:2012:i:c:p:63-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.