IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v221y2010i23p2776-2783.html
   My bibliography  Save this article

Interacting effects of habitat destruction and changing disturbance rates on biodiversity: Who is going to survive?

Author

Listed:
  • dos Santos, Francisca Soares
  • Johst, Karin
  • Huth, Andreas
  • Grimm, Volker

Abstract

Changes in disturbance rates due to climate change may increase or decrease diversity, whereas permanent loss of habitat is generally believed to decrease diversity. It is, however, very likely that the effects of disturbances and habitat destruction interact. Understanding such combined effects is essential to predict the response of communities to global changes and in particular which functional types of species are most endangered. Using an individual-based spatially explicit community model, we investigate (1) whether diversity–disturbance curves alter when spatially uncorrelated or autocorrelated habitat destruction is added, and (2) which functional types of species are able to survive under these altered conditions. Model communities consisted of four functional types of species trading off between colonisation ability and competition strength. We found that habitat destruction may alter both height and shape of diversity-disturbance curves: maximum diversity at intermediate disturbance rates may shift to other disturbance rates or even split into two peaks giving rise to bimodal diversity–disturbance relationships with different sub-communities persisting at low and high disturbance rates. Diversity responded differentially depending on how the colonisation-competition trade-off was represented. Our results suggest that, for trade-offs in seed production rate, generally the best coloniser will better withstand the interacting effects of habitat destruction and changing disturbance rates; however, for trade-offs in mean dispersal distances, functional types characterized by intermediate abilities will perform best. We conclude that predictions of the impacts of changing disturbance rates on biodiversity depend on community structure and cannot be made without knowledge of concurrent permanent habitat destruction.

Suggested Citation

  • dos Santos, Francisca Soares & Johst, Karin & Huth, Andreas & Grimm, Volker, 2010. "Interacting effects of habitat destruction and changing disturbance rates on biodiversity: Who is going to survive?," Ecological Modelling, Elsevier, vol. 221(23), pages 2776-2783.
  • Handle: RePEc:eee:ecomod:v:221:y:2010:i:23:p:2776-2783
    DOI: 10.1016/j.ecolmodel.2010.08.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438001000400X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.08.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Körner, Katrin & Jeltsch, Florian, 2008. "Detecting general plant functional type responses in fragmented landscapes using spatially-explicit simulations," Ecological Modelling, Elsevier, vol. 210(3), pages 287-300.
    2. Zinck, Richard D. & Johst, Karin & Grimm, Volker, 2010. "Wildfire, landscape diversity and the Drossel–Schwabl model," Ecological Modelling, Elsevier, vol. 221(1), pages 98-105.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meli, Mattia & Auclerc, Apolline & Palmqvist, Annemette & Forbes, Valery E. & Grimm, Volker, 2013. "Population-level consequences of spatially heterogeneous exposure to heavy metals in soil: An individual-based model of springtails," Ecological Modelling, Elsevier, vol. 250(C), pages 338-351.
    2. Herberich, Maximiliane Marion & Gayler, Sebastian & Anand, Madhur & Tielbörger, Katja, 2017. "Hydrological niche segregation of plant functional traits in an individual-based model," Ecological Modelling, Elsevier, vol. 356(C), pages 14-24.
    3. Erika Hurajová & Petra Martínez Barroso & Igor Děkanovský & Yentriani Rumeta Lumbantobing & Martin Jiroušek & Amir Mugutdinov & Ladislav Havel & Jan Winkler, 2024. "Biodiversity and Vegetation Succession in Vineyards, Moravia (Czech Republic)," Agriculture, MDPI, vol. 14(7), pages 1-33, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:221:y:2010:i:23:p:2776-2783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.