IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v221y2010i20p2435-2446.html
   My bibliography  Save this article

Enhancing generic ecological model for short-term prediction of Southern North Sea algal dynamics with remote sensing images

Author

Listed:
  • Li, Hong
  • Arias, Mijail
  • Blauw, Anouk
  • Los, Hans
  • Mynett, Arthur E.
  • Peters, Steef

Abstract

Physically based numerical modelling follows from the basic understanding of the underlying mechanisms and is often represented by a set of (partial differential) equations. It is one of the main approaches in population dynamics modelling. The emphasis of the model introduced in this paper is on the simulation of short-term spatial and temporal dynamics of harmful algal bloom (HAB) events. Total suspended matter (TSM) concentration is one of the dominant factors for harmful algal bloom (HAB) prediction in North Sea. However, the modelling of suspended matter contains a high degree of uncertainty in this area. Therefore, this research aims to achieve a better estimation for the short-term prediction of harmful algal bloom development in both space and time by using spatially distributed TSM retrieved from remotely sensed images as physically based model inputs. In order to supply complete spatially covered datasets for the physically based model instrument: generic ecological model (GEM), this research retrieves TSM information from MERIS images by means of proper estimation techniques including biharmonic splines and self-learning cellular automata. A better estimation of HAB spatial pattern development is achieved by adding spatially distributed TSM data as inputs to original GEM model, and it proved that chlorophyll-a concentration in this area is very sensitive to TSM concentration.

Suggested Citation

  • Li, Hong & Arias, Mijail & Blauw, Anouk & Los, Hans & Mynett, Arthur E. & Peters, Steef, 2010. "Enhancing generic ecological model for short-term prediction of Southern North Sea algal dynamics with remote sensing images," Ecological Modelling, Elsevier, vol. 221(20), pages 2435-2446.
  • Handle: RePEc:eee:ecomod:v:221:y:2010:i:20:p:2435-2446
    DOI: 10.1016/j.ecolmodel.2010.06.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438001000308X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.06.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Timothy Wootton, 2001. "Local interactions predict large-scale pattern in empirically derived cellular automata," Nature, Nature, vol. 413(6858), pages 841-844, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clancy, Damian & Tanner, Jason E. & McWilliam, Stephen & Spencer, Matthew, 2010. "Quantifying parameter uncertainty in a coral reef model using Metropolis-Coupled Markov Chain Monte Carlo," Ecological Modelling, Elsevier, vol. 221(10), pages 1337-1347.
    2. Perry, George L.W. & Enright, Neal J., 2007. "Contrasting outcomes of spatially implicit and spatially explicit models of vegetation dynamics in a forest-shrubland mosaic," Ecological Modelling, Elsevier, vol. 207(2), pages 327-338.
    3. Convertino, M., 2011. "Neutral metacommunity clustering and SAR: River basin vs. 2-D landscape biodiversity patterns," Ecological Modelling, Elsevier, vol. 222(11), pages 1863-1879.
    4. J Timothy Wootton & James D Forester, 2013. "Complex Population Dynamics in Mussels Arising from Density-Linked Stochasticity," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-12, September.
    5. Craig, Peter D., 2010. "Imposed and inherent scales in cellular automata models of habitat," Ecological Modelling, Elsevier, vol. 221(20), pages 2425-2434.
    6. Huan Cao & Tian Li & Shuxia Li & Tijun Fan, 2017. "An integrated emergency response model for toxic gas release accidents based on cellular automata," Annals of Operations Research, Springer, vol. 255(1), pages 617-638, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:221:y:2010:i:20:p:2435-2446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.