A geospatial model of forest dynamics with controlled trend surface
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ecolmodel.2010.06.016
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Valerie A. Barber & Glenn Patrick Juday & Bruce P. Finney, 2000. "Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress," Nature, Nature, vol. 405(6787), pages 668-673, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Abotaleb Salehnasab & Harold E. Burkhart & Mahmoud Bayat & Bagher Khaleghi & Sahar Heidari & Hafiz Umair Masood Awan, 2022. "Projection Matrix Models: A Suitable Approach for Predicting Sustainable Growth in Uneven-Aged and Mixed Hyrcanian Forests," Sustainability, MDPI, vol. 14(11), pages 1-17, June.
- Zhou, Mo, 2015. "Adapting sustainable forest management to climate policy uncertainty: A conceptual framework," Forest Policy and Economics, Elsevier, vol. 59(C), pages 66-74.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xiuchen Wu & Hongyan Liu & Dali Guo & Oleg A Anenkhonov & Natalya K Badmaeva & Denis V Sandanov, 2012. "Growth Decline Linked to Warming-Induced Water Limitation in Hemi-Boreal Forests," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-12, August.
- Zhenju Chen & Xianliang Zhang & Xingyuan He & Nicole Davi & Lulu Li & Xueping Bai, 2015. "Response of radial growth to warming and CO 2 enrichment in southern Northeast China: a case of Pinus tabulaeformis," Climatic Change, Springer, vol. 130(4), pages 559-571, June.
- Raphaël Chavardès & Lori Daniels & Patrick Waeber & John Innes & Craig Nitschke, 2013. "Unstable climate−growth relations for white spruce in southwest Yukon, Canada," Climatic Change, Springer, vol. 116(3), pages 593-611, February.
- Lucash, Melissa S. & Marshall, Adrienne M. & Weiss, Shelby A. & McNabb, John W. & Nicolsky, Dmitry J. & Flerchinger, Gerald N. & Link, Timothy E. & Vogel, Jason G. & Scheller, Robert M. & Abramoff, Ro, 2023. "Burning trees in frozen soil: Simulating fire, vegetation, soil, and hydrology in the boreal forests of Alaska," Ecological Modelling, Elsevier, vol. 481(C).
- Eryuan Liang & Christoph Leuschner & Choimaa Dulamsuren & Bettina Wagner & Markus Hauck, 2016. "Global warming-related tree growth decline and mortality on the north-eastern Tibetan plateau," Climatic Change, Springer, vol. 134(1), pages 163-176, January.
- Koichi Takahashi & Isao Okuhara, 2013. "Forecasting the effects of global warming on radial growth of subalpine trees at the upper and lower distribution limits in central Japan," Climatic Change, Springer, vol. 117(1), pages 273-287, March.
- Laura Gray & Andreas Hamann, 2013. "Tracking suitable habitat for tree populations under climate change in western North America," Climatic Change, Springer, vol. 117(1), pages 289-303, March.
- C. Thompson & A. McGuire & J. Clein & F. Chapin & J. Beringer, 2006. "Net Carbon Exchange Across the Arctic Tundra-Boreal Forest Transition in Alaska 1981–2000," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(4), pages 805-827, July.
- Huber, Nica & Bugmann, Harald & Lafond, Valentine, 2018. "Global sensitivity analysis of a dynamic vegetation model: Model sensitivity depends on successional time, climate and competitive interactions," Ecological Modelling, Elsevier, vol. 368(C), pages 377-390.
- Xiongqing Zhang & Yuancai Lei & Yong Pang & Xianzhao Liu & Jinzeng Wang, 2014. "Tree mortality in response to climate change induced drought across Beijing, China," Climatic Change, Springer, vol. 124(1), pages 179-190, May.
- Wang, Z. & Grant, R.F. & Arain, M.A. & Bernier, P.Y. & Chen, B. & Chen, J.M. & Govind, A. & Guindon, L. & Kurz, W.A. & Peng, C. & Price, D.T. & Stinson, G. & Sun, J. & Trofymowe, J.A. & Yeluripati, J., 2013. "Incorporating weather sensitivity in inventory-based estimates of boreal forest productivity: A meta-analysis of process model results," Ecological Modelling, Elsevier, vol. 260(C), pages 25-35.
- Kruse, Stefan & Wieczorek, Mareike & Jeltsch, Florian & Herzschuh, Ulrike, 2016. "Treeline dynamics in Siberia under changing climates as inferred from an individual-based model for Larix," Ecological Modelling, Elsevier, vol. 338(C), pages 101-121.
- Justin T. Maxwell & Grant L. Harley & Scott M. Robeson, 2016. "On the declining relationship between tree growth and climate in the Midwest United States: the fading drought signal," Climatic Change, Springer, vol. 138(1), pages 127-142, September.
- J. Kimball & M. Zhao & K. McDonald & S. Running, 2006. "Satellite Remote Sensing of Terrestrial Net Primary Production for the Pan-Arctic Basin and Alaska," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(4), pages 783-804, July.
- Dymond, Caren Christine & Giles-Hansen, Krysta & Asante, Patrick, 2020. "The forest mitigation-adaptation nexus: Economic benefits of novel planting regimes," Forest Policy and Economics, Elsevier, vol. 113(C).
- Brecka, Aaron F.J. & Shahi, Chander & Chen, Han Y.H., 2018. "Climate change impacts on boreal forest timber supply," Forest Policy and Economics, Elsevier, vol. 92(C), pages 11-21.
- Eryuan Liang & Christoph Leuschner & Choimaa Dulamsuren & Bettina Wagner & Markus Hauck, 2016. "Global warming-related tree growth decline and mortality on the north-eastern Tibetan plateau," Climatic Change, Springer, vol. 134(1), pages 163-176, January.
- Wang, Z. & Grant, R.F. & Arain, M.A. & Chen, B.N. & Coops, N. & Hember, R. & Kurz, W.A. & Price, D.T. & Stinson, G. & Trofymow, J.A. & Yeluripati, J. & Chen, Z., 2011. "Evaluating weather effects on interannual variation in net ecosystem productivity of a coastal temperate forest landscape: A model intercomparison," Ecological Modelling, Elsevier, vol. 222(17), pages 3236-3249.
- Willie Soon & Sallie Baliunas & Craig Idso & Sherwood Idso & David R. Legates, 2003. "Reconstructing Climatic and Environmental Changes of the Past 1000 Years: A Reappraisal," Energy & Environment, , vol. 14(2-3), pages 233-296, May.
- Foster, Adrianna C. & Armstrong, Amanda H. & Shuman, Jacquelyn K. & Shugart, Herman H. & Rogers, Brendan M. & Mack, Michelle C. & Goetz, Scott J. & Ranson, K. Jon, 2019. "Importance of tree- and species-level interactions with wildfire, climate, and soils in interior Alaska: Implications for forest change under a warming climate," Ecological Modelling, Elsevier, vol. 409(C), pages 1-1.
More about this item
Keywords
Boreal forest; Matrix Model; GIS; Diameter growth; Recruitment; Mortality;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:221:y:2010:i:19:p:2339-2352. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.