IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v220y2009i23p3394-3403.html
   My bibliography  Save this article

Invasion with stage-structured coupled map lattices: Application to the spread of scentless chamomile

Author

Listed:
  • de-Camino-Beck, T.
  • Lewis, M.A.

Abstract

Two fundamental aspects of invasion dynamics are population growth and population spread. These quantities have been subject of study in biological invasions and can be used to study management and control of organisms. In this paper we derive formulae to calculate wave speed and rates of spread for coupled map lattices. Coupled map lattice models are dynamical models where space and time are discrete. We also show how wave speed and rate of spread can be calculated for structured population coupled map lattices in deterministic, stochastic environments and heterogeneous landscapes. Coupled map lattices are simple mathematical models that can be easily linked to landscape data to study invading organisms control strategies.

Suggested Citation

  • de-Camino-Beck, T. & Lewis, M.A., 2009. "Invasion with stage-structured coupled map lattices: Application to the spread of scentless chamomile," Ecological Modelling, Elsevier, vol. 220(23), pages 3394-3403.
  • Handle: RePEc:eee:ecomod:v:220:y:2009:i:23:p:3394-3403
    DOI: 10.1016/j.ecolmodel.2009.09.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380009006115
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2009.09.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kimberly A. With, 2004. "Assessing the Risk of Invasive Spread in Fragmented Landscapes," Risk Analysis, John Wiley & Sons, vol. 24(4), pages 803-815, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Ching-Hao & Matin, Sakib & George, Ashish B. & Korolev, Kirill S., 2019. "Pinned, locked, pushed, and pulled traveling waves in structured environments," Theoretical Population Biology, Elsevier, vol. 127(C), pages 102-119.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Drechsler & Julia Touza & Piran White & Glyn Jones, 2016. "Agricultural landscape structure and invasive species: the cost-effective level of crop field clustering," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(1), pages 111-121, February.
    2. Le Maitre, David C. & Krug, Rainer M. & Hoffmann, John H. & Gordon, Anthony J. & Mgidi, Theresa N., 2008. "Hakea sericea: Development of a model of the impacts of biological control on population dynamics and rates of spread of an invasive species," Ecological Modelling, Elsevier, vol. 212(3), pages 342-358.
    3. Andrew M. Deines & Valerie C. Chen & Wayne G. Landis, 2005. "Modeling the Risks of Nonindigenous Species Introductions Using a Patch‐Dynamics Approach Incorporating Contaminant Effects as a Disturbance," Risk Analysis, John Wiley & Sons, vol. 25(6), pages 1637-1651, December.
    4. Duncan A. Robertson, 2019. "Spatial Transmission Models: A Taxonomy and Framework," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 225-243, January.
    5. Papaïx, Julien & Touzeau, Suzanne & Monod, Hervé & Lannou, Christian, 2014. "Can epidemic control be achieved by altering landscape connectivity in agricultural systems?," Ecological Modelling, Elsevier, vol. 284(C), pages 35-47.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:220:y:2009:i:23:p:3394-3403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.