IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v220y2009i20p2702-2713.html
   My bibliography  Save this article

Temporal-spatial dynamics of vegetation variation on non-point source nutrient pollution

Author

Listed:
  • Ouyang, Wei
  • Wang, Xuelei
  • Hao, Fanghua
  • Srinivasan, R.

Abstract

The temporal-spatial interaction of land cover and non-point source (NPS) nutrient pollution were analyzed with the Soil and Water Assessment Tool (SWAT) to simulate the temporal-spatial features of NPS nutrient loading in the upper stream of the Yellow River catchment. The corresponding land cover data variance was expressed by the normalized difference vegetation index (NDVI) that was calculated from MODIS images. It was noted that the temporal variation of land cover NDVI was significantly correlated with NPS nutrient loading. The regression analysis indicated that vegetation not only detained NPS nutrient pollution transportation, but also contributed to sustainable loading. The temporal analysis also confirmed that regional NDVI was an effective index for monthly assessment of NPS nitrogen and phosphorus loading. The spatial variations of NPS nutrient loading can be classified with land cover status. The high loadings of NPS nitrogen in high NDVI subbasins indicated that forestry and farmland are the main critical loss areas. Farmland contributed sustainable soluble N, but the loading of soluble and organic N from grassland subbasins was much lower. Most P loading came from the areas covered with dense grassland and forestry, which cannot directly discharge to local water bodies. However, some NPS phosphorus from suburban farmland can directly discharge into adjacent water bodies. The interactions among nutrient loading, NDVI, and slope were also analyzed. This study confirmed that the integration of NPS modeling, geographic information systems, and remote sensing is needed to understand the interactive dynamics of NPS nutrient loading. Understanding the temporal-spatial variation of NPS nutrients and their correlations with land cover will help NPS pollution prevention and water quality management efforts. Therefore, the proposed method for evaluating NPS nutrient loading by land cover NDVI can be an effective tool for pollution evaluation and watersheds planning.

Suggested Citation

  • Ouyang, Wei & Wang, Xuelei & Hao, Fanghua & Srinivasan, R., 2009. "Temporal-spatial dynamics of vegetation variation on non-point source nutrient pollution," Ecological Modelling, Elsevier, vol. 220(20), pages 2702-2713.
  • Handle: RePEc:eee:ecomod:v:220:y:2009:i:20:p:2702-2713
    DOI: 10.1016/j.ecolmodel.2009.06.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380009004475
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2009.06.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gowda, Prasanna H. & Mulla, David J. & Jaynes, Dan B., 2008. "Simulated long-term nitrogen losses for a midwestern agricultural watershed in the United States," Agricultural Water Management, Elsevier, vol. 95(5), pages 616-624, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shang, Xiao & Wang, Xinze & Zhang, Dalei & Chen, Weidong & Chen, Xuechu & Kong, Hainan, 2012. "An improved SWAT-based computational framework for identifying critical source areas for agricultural pollution at the lake basin scale," Ecological Modelling, Elsevier, vol. 226(C), pages 1-10.
    2. Wei Ouyang & Fanghua Hao & Kaiyu Song & Xuan Zhang, 2011. "Cascade Dam-Induced Hydrological Disturbance and Environmental Impact in the Upper Stream of the Yellow River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(3), pages 913-927, February.
    3. Yang, Shengtian & Dong, Guotao & Zheng, Donghai & Xiao, Honglin & Gao, Yunfei & Lang, Yang, 2011. "Coupling Xinanjiang model and SWAT to simulate agricultural non-point source pollution in Songtao watershed of Hainan, China," Ecological Modelling, Elsevier, vol. 222(20), pages 3701-3717.
    4. Zhang, H. & Huang, G.H., 2011. "Assessment of non-point source pollution using a spatial multicriteria analysis approach," Ecological Modelling, Elsevier, vol. 222(2), pages 313-321.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeremy G. Weber & Nigel Key & Erik O’Donoghue, 2016. "Does Federal Crop Insurance Make Environmental Externalities from Agriculture Worse?," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(3), pages 707-742.
    2. Paudel, Jayash & Crago, Christine L., 2018. "Fertilizer Use and Water Quality in the United States," 2018 Annual Meeting, August 5-7, Washington, D.C. 274312, Agricultural and Applied Economics Association.
    3. Ale, Srinivasulu & Gowda, Prasanna H. & Mulla, David J. & Moriasi, Daniel N. & Youssef, Mohamed A., 2013. "Comparison of the performances of DRAINMOD-NII and ADAPT models in simulating nitrate losses from subsurface drainage systems," Agricultural Water Management, Elsevier, vol. 129(C), pages 21-30.
    4. Weber, Jeremy G. & Key, Nigel & O'Donoghue, Erik J., 2015. "Does Federal Crop Insurance Encourage Farm Specialization and Fertilizer and Chemical Use?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 204972, Agricultural and Applied Economics Association.
    5. Shailendra Singh & Soonho Hwang & Jeffrey G. Arnold & Rabin Bhattarai, 2023. "Evaluation of Agricultural BMPs’ Impact on Water Quality and Crop Production Using SWAT+ Model," Agriculture, MDPI, vol. 13(8), pages 1-16, July.
    6. Jayash Paudel & Christine L. Crago, 2021. "Environmental Externalities from Agriculture: Evidence from Water Quality in the United States," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(1), pages 185-210, January.
    7. Hendricks, Nathan P. & Sinnathamby, Sumathy & Douglas-Mankin, Kyle & Smith, Aaron & Sumner, Daniel A. & Earnhart, Dietrich H., 2014. "The environmental effects of crop price increases: Nitrogen losses in the U.S. Corn Belt," Journal of Environmental Economics and Management, Elsevier, vol. 68(3), pages 507-526.
    8. Ping Li & Nina Omani & Indrajeet Chaubey & Xiaomei Wei, 2017. "Evaluation of Drought Implications on Ecosystem Services: Freshwater Provisioning and Food Provisioning in the Upper Mississippi River Basin," IJERPH, MDPI, vol. 14(5), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:220:y:2009:i:20:p:2702-2713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.