IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v213y2008i2p209-228.html
   My bibliography  Save this article

Response of tree growth to a changing climate in boreal central Canada: A comparison of empirical, process-based, and hybrid modelling approaches

Author

Listed:
  • Girardin, Martin P.
  • Raulier, Frédéric
  • Bernier, Pierre Y.
  • Tardif, Jacques C.

Abstract

The impact of 2×CO2 driven climate change on radial growth of boreal tree species Pinus banksiana Lamb., Populus tremuloides Michx. and Picea mariana (Mill.) BSP growing in the Duck Mountain Provincial Forest of Manitoba (DMPF), Canada, is simulated using empirical and process-based model approaches. First, empirical relationships between growth and climate are developed. Stepwise multiple-regression models are conducted between tree-ring growth increments (TRGI) and monthly drought, precipitation and temperature series. Predictive skills are tested using a calibration–verification scheme. The established relationships are then transferred to climates driven by 1× and 2×CO2 scenarios using outputs from the Canadian second-generation coupled global climate model. Second, empirical results are contrasted with process-based projections of net primary productivity allocated to stem development (NPPs). At the finest scale, a leaf-level model of photosynthesis is used to simulate canopy properties per species and their interaction with the variability in radiation, temperature and vapour pressure deficit. Then, a top-down plot-level model of forest productivity is used to simulate landscape-level productivity by capturing the between-stand variability in forest cover. Results show that the predicted TRGI from the empirical models account for up to 56.3% of the variance in the observed TRGI over the period 1912–1999. Under a 2×CO2 scenario, the predicted impact of climate change is a radial growth decline for all three species under study. However, projections obtained from the process-based model suggest that an increasing growing season length in a changing climate could counteract and potentially overwhelm the negative influence of increased drought stress. The divergence between TRGI and NPPs simulations likely resulted, among others, from assumptions about soil water holding capacity and from calibration of variables affecting gross primary productivity. An attempt was therefore made to bridge the gap between the two modelling approaches by using physiological variables as TRGI predictors. Results obtained in this manner are similar to those obtained using climate variables, and suggest that the positive effect of increasing growing season length would be counteracted by increasing summer temperatures. Notwithstanding uncertainties in these simulations (CO2 fertilization effect, feedback from disturbance regimes, phenology of species, and uncertainties in future CO2 emissions), a decrease in forest productivity with climate change should be considered as a plausible scenario in sustainable forest management planning of the DMPF.

Suggested Citation

  • Girardin, Martin P. & Raulier, Frédéric & Bernier, Pierre Y. & Tardif, Jacques C., 2008. "Response of tree growth to a changing climate in boreal central Canada: A comparison of empirical, process-based, and hybrid modelling approaches," Ecological Modelling, Elsevier, vol. 213(2), pages 209-228.
  • Handle: RePEc:eee:ecomod:v:213:y:2008:i:2:p:209-228
    DOI: 10.1016/j.ecolmodel.2007.12.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438000700631X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2007.12.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Jinxun & Vogelmann, James E. & Zhu, Zhiliang & Key, Carl H. & Sleeter, Benjamin M. & Price, David T. & Chen, Jing M. & Cochrane, Mark A. & Eidenshink, Jeffery C. & Howard, Stephen M. & Bliss, Nor, 2011. "Estimating California ecosystem carbon change using process model and land cover disturbance data: 1951–2000," Ecological Modelling, Elsevier, vol. 222(14), pages 2333-2341.
    2. Ana Márquez & Raimundo Real & Jesús Olivero & Alba Estrada, 2011. "Combining climate with other influential factors for modelling the impact of climate change on species distribution," Climatic Change, Springer, vol. 108(1), pages 135-157, September.
    3. Anyomi, Kenneth A. & Raulier, Frédéric & Mailly, Daniel & Girardin, Martin P. & Bergeron, Yves, 2012. "Using height growth to model local and regional response of trembling aspen (Populus tremuloides Michx.) to climate within the boreal forest of western Québec," Ecological Modelling, Elsevier, vol. 243(C), pages 123-132.
    4. Johnston, Mark & Hesseln, Hayley, 2012. "Climate change adaptive capacity of the Canadian forest sector," Forest Policy and Economics, Elsevier, vol. 24(C), pages 29-34.
    5. Stratton, Tana & Price, David T. & Gajewski, Konrad, 2011. "Impacts of daily weather variability on simulations of the Canadian boreal forest," Ecological Modelling, Elsevier, vol. 222(17), pages 3250-3260.
    6. Zhen-Ming Ge & Seppo Kellomäki & Heli Peltola & Xiao Zhou & Hannu Väisänen, 2013. "Adaptive management to climate change for Norway spruce forests along a regional gradient in Finland," Climatic Change, Springer, vol. 118(2), pages 275-289, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:213:y:2008:i:2:p:209-228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.